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Abstract 

We present the political network electoral system, a new semi-proportional 

representation electoral system for members of parliament and councilors that 

replaces party-lists by a social network where each candidate chooses 

individually which other candidates can benefit from his or her votes. This 

allows the full liability of the former candidate for the latter and provides to the 

elector intuitive and difficult to disguise information about them. We show that 

the flexibility of the network can be restricted by rules created by each party 

and that, in an extreme case, the political network system can be reduced to a 

most open party-list system. This way, the  system can be calibrated to comply 

with the preferences of candidates, parties and voters and has a good a chance 

of being useful  in different contexts. The development of the proposed system 

required the creation of algorithms to carry proportional representation from 

political elections to social networks and, as a collateral effect, a new method 

for selecting sets of key players and simplifying networks emerged. 

1. Letter to the reader 

This paper goes till page 31. After that, there is only an appendix with mathematical 

proofs. 

The paper was not peer reviewed so read it with care. It was submitted to five journals 

and they declined to review it. The most common reason for that was that the paper was 

out of scope. This is a contribution to politics from a computer scientist who is also a 

Brazil’s Federal Revenue Fiscal Auditor. My main goal is to put an important fraud 

detection tool, which is social network analysis, at the service of the voters and make 

them more capable of separating candidates that are lying from those who are not. 

Apparently this does not fit well in political science. 

To help you to decide if it is worth to read the paper, all rejection letters are copied 

bellow. Some editors wrote that they found the paper interesting. This does not mean 

they endorse its contents since none of them properly reviewed the paper. 



In this version of the paper, a section about finding key players and simplifying social 

networks was included. This section was only present in the version that was submitted 

to Social Networks and not in the versions sent to the other journals which are more 

restricted to political science. 

Some corrections were made based on the comments that came from the Journal of 

Theoretical Politics and a section explaining how the network can be constructed in 

steps was included. 
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We have received and read your manuscript #ASQ-17-0098, entitled "Political Network Election 

System," which you submitted to the Administrative Science Quarterly. We appreciate your 

interest in the Administrative Science Quarterly.  In the present instance, however, we feel that it 

is best to decline the opportunity to review your paper rather than sending it out to reviewers for 

comments and evaluation.  At ASQ, we screen all manuscripts before initiating a review to ensure 

that each paper conforms to our editorial goals.  We think that it is better to truncate the review 

process and spare authors lengthy delays when acceptance appears extremely unlikely. As detailed 

in our “Invitation to Contributors,” the Administrative Science Quarterly publishes theoretical 

and empirical work on organizations that is grounded in the current literature on organizations 

and makes a significant addition to the literature. Your paper constructs and solves a 

mathematical model of a social network electoral system with properties that exceed, but can 

encompass, those of traditional party electoral systems. Although this is an innovative and 

rigorous study, the topic does not fall within the editorial scope of ASQ. 

Submissions to ASQ should engage the theoretical and empirical literature on organizations and 

make significant contributions to it. This includes organizations that are part of the state, 

especially service-providing organizations such as health care systems and school systems, as well 

as state administrative systems. We could also include studies on political parties and how they 

function as organizations, and we do in fact have work on social movements, but our editorial 

domain does not include electoral systems and their properties. This delineation is because we see 

organizations as composed of people interacting in goal-driven activities, and electoral systems 

are designed to aggregate individual goals without direct individual interaction. In some ways 

they are the opposite of organizations because in electoral systems, individual goals are prior to 

collective goals (at least by design), and aggregation of individual goals happens without 

interpersonal influence. 

Please do not interpret the decision to decline to review your manuscript as a comment on the 

merits of your work.  We intend no such evaluation.  This decision only reflects our judgment that 

your paper’s objectives fall outside of ASQ’s editorial domain.  This paper clearly has potential in 

other journals closer to its goals. We appreciate your considering ASQ as an outlet for your work. 



Best wishes, 

Henrich 

Dr. Henrich Greve 

Editor, Administrative Science Quarterly 

henrich.greve@insead.edu 
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which you submitted to Political Analysis. 

The editors have reviewed your manuscript.  Based on this evaluation,  at this point in time I must 

decline it for publication in Political Analysis and close the file on it for further consideration. 

While I found your paper interesting, it does not really break novel methodological ground (e.g., 

novel statistical tools). You paper, instead, develops a new voting system. I would suggest you 

send it to a journal such as the Journal of Theoretical Politics. 

Thank you for considering Political Analysis for the publication of your research.  I hope the 

outcome of this specific submission will not discourage you from the submission of future 

manuscripts. 

Sincerely, 

Jonathan N Katz 

Co-Editor, Political Analysis 

jkatz@caltech.edu 
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Dear Dr. Jambeiro Filho, 

Thank you for submitting your manuscript to Electoral Studies. Unfortunately, after reviewing 

your paper I feel that it is not suitable for publication in the journal and is unlikely to be 

favorably reviewed by the referees. Accordingly, the manuscript is being returned without review. 

Thank you for giving us the opportunity to consider your work. 

Kind regards, 

Professor Clarke 

Editor 
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paper I feel that it is not suitable for publication in the journal as it falls outside the scope of the 

journal. Accordingly, the manuscript is being returned without review. 

Thank you for giving us the opportunity to consider your work. 

Kind regards, 

Professor Everett 

Co-Editor 
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System" which you submitted to the Journal of Theoretical Politics. 

Unfortunately, we have been unable to procure any useful reviews on your manuscript, so we 

have considered whether it is best to continue to seek reviewers or render a decision on the basis 

of our own reading. 

While we find your manuscript very interesting, we are sufficiently pessimistic about the 

prospects for external review that we are declining it for publication at this stage.  First and 

foremost, the manuscript is very hard to read due to grammar and syntax issues (for example, 

when you say "insensibility," you mean "insensitivity").  Second, based on our reading, many of 

the results are not very precisely stated (and accordingly, the proofs are impossible to verify).  The 

literature on electoral systems is, as you know, vast, and it is not clear how to properly situate this 

system in the literature without more specification (for example, considering the process as 

simultaneous-move or sequential-move noncooperative game between the candidates or parties) of 

how the neighbors would actually be chosen (and, arguably, how voters would respond to them). 

I am very sorry that we could not procure a more detailed set of reports on the manuscript, but we 

suspect that our difficulty is at least in part due to these issues.  We hope this feedback, as 

abbreviated as it is, is helpful as you pursue this research further. 

Thank you for considering the Journal of Theoretical Politics for the publication of your research.  

We hope the outcome of this specific submission will not discourage you from the submission of 

future manuscripts. 

Sincerely, 

John Patty 

Coeditor, Journal of Theoretical Politics 

jwpatty@uchicago.edu 



2. Introduction 

We present the political network electoral system, a new semi-proportional 

representation electoral system for members of parliament and councilors that replaces 

party-lists by a social network called the political network.  

Proportional representation party-list systems are voting systems where the number of 

elected candidates in each party-list is approximately proportional to the total number of 

votes obtained by the party. There are two types of them: the open party-list systems 

and the closed party-list systems (Norris 1997).  

With closed party-lists, the order of election of individual candidates within each party-

list is supplied by the party itself without any influence from the voters. With open 

party-list systems, such influence exists in different degrees. In the Netherlands, for 

example, the list is ordered by the party, but individual candidates that receive more 

votes than a certain threshold are ensured to get a seat, regardless of the original list 

order (Leenknegt and Schyff 2007). In Brazil (Brasil 1965), Finland (Ministry of Justice 

of Finland 2016)  and Latvia (Hardman and Renwick 2012),  the number of preference 

votes received by each individual candidate fully determines which candidates are 

elected within each party.  We refer to these systems by the name of “most open party-

list systems” as they are already referred in the internet (Wikipedia 2016) . 

In the political network system, each candidate chooses a set of neighbors who are the 

other candidates for which he or she wants his or her votes to be transferred if he or she 

is eliminated from the election or has more votes than needed to be elected. He or she 

also indicates the percentage of votes that should be passed to each of them. Together, 

the choices made by all candidates build the political network.  

We will show ahead, that a particular set of connection choices can reduce the political 

network system to a most open party-list system, characterizing the former as a 

generalization of the latter.  

The faces in the neighborhood of a candidate bring more information to the voters than 

simple party lists, making it safer for them to vote for the candidate of their preference 

if they notice that, in case the candidate looses the election, the vote will be transferred 

to a few other reasonably good candidates than if they could only count on the 

information that any one among a hundred other candidates of the same party could 

benefit from the vote. On the other hand, a candidate that adopts a pleasant discourse 



but chooses to transfer votes to suspect candidates is also suspect as illustrated in Figure 

1. 

Figure 1: view of the neighborhood of candidate 997 

 

In contrast to a candidate’s discourse, that may be forged with impunity, his or her 

choices of neighbors have strong practical consequences in the election, what favors 

transparency and puts the candidates in a tight spot. They will have to confess their true 

relationships or pass votes to whom they don’t want to.  

A lot of information about the candidates like positions occupied in the past, amount of 

votes received in previous elections, parties to which they belong or belonged, the 

lawsuits to which they respond, heritage, heritage recent variation and votes against or 

in favor of any project discussed in prior incumbencies become much more remarkable 

if observed from the network’s point of view. 

In Figure 2, we show that the voters can have a bird's-eye view of the network with 

remarks of their own choice. In this view, most candidates are represented by light gray 

squares, but candidates who satisfied some positive criterion specified by a voter are 

displayed in a darker shade and candidates who satisfied some negative criterion are 

displayed in black. With such view, the electors can choose a candidate that is near a 

darker shade zone and far from black zones as an starting point to decide for whom they 

will vote. 



Reasoning about the network using different points of views, as exemplified in  Figure 1 

and Figure 2, is a simple kind of social network analysis (Scott 2012). This kind of 

analysis is currently used to detect frauds both in private (Subelj, Furlan and Bajec 

2011) and public sectors (Castro 2016) and, if the underlying structure of a voting 

system is a social network, can, very well, help voters to spot deceiving candidates and 

highlight interesting one’s. Tools for social network analysis are, nowadays, pretty 

common (Wikipedia 2017) and voters don’t really need to use them themselves, the 

candidates can do that for them and announce the results. Opponent candidates and 

political commentators can also help. 

 

Figure 2 :  bird’s-eye view of an illustrative political network with voter highlights 

 

There are no radical barriers among people ideas, but in the party-list systems two 

candidates either belong to the same party or do not. There are no degrees of proximity. 

In the political network system, the closer two candidates are in the network structure 

the more similar they are. Any candidates with ideas in common may transfer part of 

their votes to each other. This way, if a candidate that, for example, defends animals 

rights is eliminated from the election, the probability that another animal defender is 

elected will rise as a compensation. 

In the political network system, when candidates are eliminated or have surplus votes, 

votes are reused by a process that relies on a network structure that was built by the 



candidates themselves. At first, giving electors more detailed control over their votes 

like in single transferrable voting systems (Tideman 1995) or cumulative voting systems 

(Pildes and Donoghue 1995) may look better. However, benefiting from such enhanced 

control requires acquiring more knowledge. Many voters don’t think it is worth to do it 

and are, sometimes, described as rationally ignorant (Downs 1957). In practice, with 

single transferrable voting systems voters may fail to rank more than a few candidates 

and have their votes eventually wasted after they become non transferable (Tideman 

1995). Even if they do rank many candidates, it is unlikely that they are well-informed 

in respect to the whole list, what can even result in “donkey voting” (Orr 2002) . 

Cumulative voting systems put an even heavier burden on the voters.  

On the other hand, candidates are usually highly committed to an election and much 

more involved with politics. Thus, they can be expected to know much more about each 

other than the voters. It is true, that candidates cannot be trusted to defend the interests 

of the voters before they defend their own. However, in the political network system, 

candidates will be judged by the electors after they choose their neighbors and it will be 

dangerous for them to choose badly. It can be easier for the electors to approve or 

disprove candidates choices than making the choices themselves.  

Voters misperceive where candidates stand on important issues, fail to recall relevant 

facts related to prior administrations and badly estimate the support of a candidate 

within particular social groups (Bartels 2008). Instead of accurate knowledge about 

politics they use information shortcuts to decide their votes. Some authors argue that, in 

the end, people vote rationally using such shortcuts (Popkin 1994), while others 

disagree (Shenkman 2009). The relations among candidates provided by the political 

network can become informative and reliable shortcuts to judge a candidate and help 

rationally low-informed electors to vote well. 

The idea of allowing candidates to delegate their votes to other candidates in order to 

obtain transparency and simplicity for the electors without limiting their choices like 

closed party-list systems or single member district voting systems (Birch 2005) and in 

order to exploit the fact that candidates know more about each other than the voters is 

not entirely new and has lead to the conception of multiple-seat delegative elections 

(Ford 2002).  However, this electoral system does not possess two essential 

mathematical properties of the political network system that will be presented ahead: the 

insensitivity to the order of eliminations and elections, that neutralizes an important 

source of randomness and unfairness in the election process and the guarantee of the 



minimum number of elected candidates for network solid coalitions, that is essential for 

a proportional representation system.      

It is worth to mention a voting system that has been proposed for communities of users 

of electronic social networks (Boldi, et al. 2009). This specialized system does offer a 

mechanism to elect multiple representatives and, in principle, was a candidate to serve 

as a base for the construction of a political electoral system whose underlying structure 

is a social network. However, this system does not lead in a natural way to proportional 

representation. To achieve it, its authors suggest to detect the isolated components of the 

network or to build components using clustering methods. The components are then 

treated as parties or coalitions and traditional methods to obtain proportionality like the 

D’Hondt method (Gallagher 1991) are applied. In contrast, the political network system 

leads to proportionality naturally and a lower bound to the number of elected candidates 

for coalitions is established without the system having to treat isolated components 

specially or form clusters at all, indicating that this lower bound emerges from a general 

tendency to proportionality. 

The system developed for electronic social networks cited above is partially based on 

PageRank (Page, et al. 1999), whose foundation is the convergence of an infinite 

process called random walk, which is, in its turn, an application of a Markov Chain 

(Kemeny and Snell 1976) . PageRank has also been employed to rank members of 

social networks (Heidemann, Klier and Probst 2010, Pedroche 2010) and was,  itself, a 

candidate to be the base of the political network electoral system. However, PageRank 

was conceived to rank web pages, not to assign a fixed number of seats to politicians. 

Though there are similarities between the two process, there is at least one aspect that is 

important for political elections that would be completely ignored by a PageRank 

approach: in a proportional representation system, the eliminated candidates can transfer 

all their votes, but the elected candidates must retain a certain number of votes to back 

their own elections and can only transfer their surplus votes to other candidates. In 

single transferrable voting systems, this essential aspect is captured in the concept of an 

electoral quota. Having proportionality as a goal, the political network system also 

needed to have the notion of a quota inserted in its core and could not be grounded 

simply on a random walk process. Thus, we conceived another type of infinite processes 

that act over free networks and proved that they achieve proportionality.  



3. Definition, basic properties and feasibility 

We describe the political network electoral system through the following statements: 

• before the election begins, each candidate chooses a set of other candidates  as 

his or her neighbors and  specifies the percentage of votes to be transferred  to 

each of them in case he or she happens to have any transferable votes (note that 

neighborhood relations don’t need to be symmetric); 

• if a neighbor set is not empty, the percentages of transfer to each of its elements 

sum one; 

• any votes in an eliminated candidate, received directly from voters or through 

transfers from other candidates are transferable; 

• any votes beyond the current quota in an elected candidate, received directly 

from voters or through transfers from other candidates are transferable; 

• any votes received by a remaining candidate, who is a candidate that has not yet 

been elected or eliminated, directly from voters or through transfers from other 

candidates are not transferable;  

• the current quota is the current number of valid votes divided by the number of 

seats in dispute; 

• the current number of valid votes is the number of valid votes minus the number 

of votes that already had to be discarded by the election procedure; 

• a direct vote transfer is the division of a package of transferrable votes belonging 

to one candidate among his or her neighbors according to the percentages chosen 

by he or she; 

• electors vote for a single candidate or for a party if they don’t want to specify a 

particular candidate; 

• votes for a party are treated as if the parties were virtual candidates who are 

eliminated in the beginning of the election and whose neighbors are their 

members, all of them associated to the same percentage of transfer; 

• the election procedure is as follows: 

o eliminate party virtual candidates  

o transfer and discard votes 

o while there are remaining candidates 

� while there are remaining candidates with at least as many votes 

as the current quota 



• declare such candidates elected; 

• if there are no remaining candidates with more than zero 

votes and none of them can receive votes from any 

elected candidate or there are no remaining candidates 

with more than zero votes and all seats are filled, fill the 

remaining seats declaring some candidates with zero votes 

elected using any arbitrary criterion, eliminate all 

remaining candidates, terminate the election and exit 

• transfer and discard votes 

� if there are remaining candidates 

• eliminate the candidate with least votes 

• transfer and discard votes 

• the procedure to transfer and discard votes is any procedure that, in a finite 

number of steps, results in the same number of votes in any candidate as a, 

possibly infinite, process that 

o never transfer or discard non transferrable votes; 

o changes the number of votes in any candidate only through direct vote 

transfers or vote discards; 

o converges  to a state where  

� all transferable votes have reached remaining candidates except 

for the votes that cannot reach a remaining candidate through any 

number of direct vote transfers; 

� all transferrable votes that cannot reach a remaining candidate 

through any number of direct vote transfers have been discarded. 

To visualize a vote transfer process, suppose that, in Figure 3, candidate 1 received 

1000 votes from the electors, but latter was eliminated from the election. In this case, 

candidate 2 would receive 400 votes, while candidates 3 and 4 would receive 300 votes 

each. If division is not exact, fractions are used normally. 

Imagine now that candidate 3, who chose candidates 7 and 8 as neighbors with 

percentages of 50% for each, received 2000 votes from voters. With the 300 that he or 

she received from candidate 1, he or she now has 2300 votes. If he or she is then 

eliminated candidates 7 and 8 will receive each one 1150 votes. Note that, of these, 150 

votes came actually from candidate 1. So the votes of a candidate can help the neighbors 



of his or her neighbors, but they tend to do that with less intensity than they help the 

immediate neighbors. 

Figure 3: structure for vote transfer around candidate 1 

 

In the political network system, just like in single transferrable voting systems, the 

process of definition of the elected candidates involve dividing the sum of all valid 

votes by the number of available seats getting what is called the quota.  

Candidates who have more votes than this quota are already elected and their surplus 

votes are transferred through the network.  

In the example in Figure 1, if, rather than having been eliminated, candidate 3 had been 

elected and if the quota was of, for example, 1800 votes, candidate 3 would transfer 500 

votes to his or her neighbors, instead of 2300. In this case, candidates 7 and 8 would 

receive 250 votes each.  

After the transfers of all initial surplus votes, some other candidates may reach the quota 

and be elected immediately what causes their surplus votes to be transferred, possibly 

causing others to be elected too.  

If there is no direct or indirect path going from a certain candidate to any remaining 

candidates, any votes in this candidate can never reach one of them. This happens, for 

example, because a candidate didn’t choose any neighbors or because there is a closed 

sub network without any remaining candidates. In this case, the votes are discarded, that 

is, they are subtracted from the total number of valid votes and the current quota is 

adjusted accordingly, what also may cause other candidates to be elected.  

Reductions in the quota when some votes cannot be transferred are also employed in 

single transferrable voting systems, for example, when Meek’s method is applied (Hill, 

12

3

4

5

6

7

8

9

40%

30%

30%

50%

50%

50%

10%

50%

90%



Wichmann and Woodall 1987). Surplus votes of already elected candidates that result 

from the reduction of the quota are transferred through the network normally. 

When no more candidates can be elected this way, all remaining candidates are 

compared and the one with least votes is eliminated (if there is a tie, some arbitrary 

criterion should be used to break it). This candidate has his or her votes transferred to 

remaining candidates according to his or her neighbor set. The elimination of the 

candidate with least votes and transfer of his or her votes is also borrowed from single 

transferable voting systems.  

The process continues always declaring those who have reached the quota as elected, 

eliminating the candidate with least votes and making the necessary vote transfers and 

adjustments in the current quota till all candidates have been either elected or 

eliminated. 

In each step of the process, every time there are transfers for candidates that are already 

elected or eliminated they are transferred again till all the votes have been distributed to 

remaining candidates, except if that is impossible.  

In the appendix, we show that the number of elected candidates indicated by the 

election procedure always match the number of available seats (Theorem 1). 

The reader may worry about the fact that the definition of the system does not specify 

the exact order of vote transfers and some other implementation details. Indeed, if such 

details could affect the election result, further arbitrations would be required and they 

would hinder trust in the system. However, in the appendix lies the proof that, 

regardless of the order of vote transfers and other details, any implementation that 

respects what is written in the present section produces exactly the same set of elected 

candidates (Theorem 2).  

Small differences in amounts of votes can affect the order in which candidates are 

claimed to be elected or eliminated. There can be concerns that this order could have big 

consequences to the final results introducing randomness and unfairness in the election. 

This could also lead candidates and voters to try to predict the order of elections and 

eliminations before, respectively, choosing neighbors and deciding votes, what would 

make their behavior more tactical than ideological. However, the order of elections and 

eliminations, by itself, has no consequences at all. At any point in the election process, 

after all required transfers have occurred, given a set of already eliminated candidates 

and a set of already elected candidates the number of votes in any candidate is 



guaranteed to be the same regardless of the order in which the elections and 

eliminations took place (Theorem 9). 

The reader may also be worried about the practical feasibility of the system, since the 

presence of cycles in the network can lead to infinite sequences of vote transfers. We 

cannot work around this problem simply inserting barriers in the vote transfer process, 

like disallowing transfers to non remaining candidates or arbitrating a maximum 

number of transfers for each vote. Such barriers would lead to waste of votes and would 

break important properties like the insensitivity to the order of eliminations and 

elections and the guarantee of the minimum number of elected candidates for network 

solid coalitions that will be presented ahead. Fortunately, the result of the infinite 

processes of vote transferring can be calculated exactly, in a number of steps that is 

finite (Theorem 3) and acceptable for typical numbers of candidates, which are bellow 

2000 (Theorem 6). The amount of memory required for that is not a problem also 

(Theorem 7). Using a personal computer with 4GB of RAM  and an Intel Quad core, 

Q9550,  we were able to run a simulated election with 2250 candidates in 25 minutes. 

We employed a network involving connections among all candidates what is the worst 

case, both for memory storage and execution time.  

The calculation of the results of the infinite process is complex enough to require a 

computer, but with the use of an open source program, after the raw number of votes of 

each candidate is collect and publicized the algorithm to determine the elected 

candidates can be run at home, eliminating any suspicions that could be raised over 

closed systems.  

The vote transfer process involves fractions, therefore we should worry about floating 

point rounding errors. For a small number of candidates, like, for example, 200, we can 

run the election process using infinite precision numbers and eliminate the problem. For 

elections with a larger number of candidates, finite precision numbers may need to be 

employed and  there is the possibility that, in the moment of an elimination, the number 

of votes in the two candidates with least votes are identical till the last significant digit 

considered, but differ in the next digit. If this happens, a rounding error may cause the 

eliminated candidate not to be the most adequate. This condition is extremely unlikely 

since sixteen significant digits are typically used in computer systems and many more 

digits can be employed if desired. Moreover, if the two candidates are so close in their 

number of votes, none of them is really better from the point of view of the constituency 

and we can disregard this lack of precision and pick any of them.  



In the appendix, we prove that rounding errors cannot break important properties of the 

system like the total number of elected candidates (Corollary 6) and the minimum 

number of elected candidates in a network solid coalition that we will discuss in the 

next section (Corollary 9). 

To help the analysis of the network, also in the appendix, we show that it is possible to 

generate views where some candidates are removed from the role of middle men in any 

vote transfers (Theorem 8), making clear the relations among other candidates. A view 

that shows the relationships between any candidate and all incumbent candidates, for 

example, would eliminate inexpressive candidates and could be quite insightful.  

4. Steps in the formation of a political network 

To choose their neighbors the candidates will want to know who will be the neighbors 

of such neighbors. To avoid misunderstandings or that one candidate can cheat on the 

others, we propose that the neighborhood definitions are made in steps.  

Bellow, we present an example sequence of steps that could be used:  

 

1. definition of who will be the candidates; 

2. first free choice of neighbors; 

3. second free choice of neighbors: in this step it is already possible to consider 

the neighbors of the neighbors; 

4. first neighborhood adjustment: in this step it is not possible to add neighbors, 

just to eliminate them or to change percentages of transfer; 

5. second neighborhood adjustment: in this step percentages can only be 

changed in 50% of their original values; 

6. third neighborhood adjustment: in this step percentages can only be changed 

in 25% of their original values; 

7. forth neighborhood adjustment: in this step percentages can only be changed 

in 10% of their original values. 

 

We don’t think that the details of the sequence presented above are important as long as 

the network is formed gradually and each candidate has the opportunity to react to the 

choices of the others.  



5. Relation to most open party-list systems 

It is convenient to notice that the political network can be viewed as a generalization of 

a most open party-list system, that is, there is a particular political network structure that 

presents the same key properties as a system of this type. We call this particular 

structure, the party-list network structure. 

The party-list political network structure is a structure where each party corresponds to 

a party-list coalition containing all its candidates. A party-list coalition is a subnetwork 

where all candidates of the corresponding party are the only neighbors of each other and 

the percentages of transfer are all identical. In Figure 4, we show an example of such 

structure. For simplicity we don’t indicate percentages of transfer. 

Figure 4: political network restricted to party-list coalitions 

 

The main property of proportional representation party-list systems is that the number 

of elected candidates in each party-list is proportional to the sum of the number of votes 

obtained by the party as a whole. The distinguishing property of most open party-list 

systems is that the elected candidates of any party are those that received more votes 

individually.  

In general, party-list systems cannot guarantee perfect proportionality and they vary in 

how they approach such goal (Gallagher 1991). The party-list network structure does 

not mimic any established party-list system. Instead it guarantees that: 

1. the number of elected candidates of each party is at least equal to the floor of 

��∙�� , where �� is the number of votes obtained by the party, � is the total 

number of valid votes and � is the number of seats available, as long as the 
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party has enough candidates for that (see appendix, Theorem 4 and Corollary 

10); 

2. the elected candidates of each party are exactly those who received more votes 

individually (see appendix, Theorem 5). 

It is worth asserting that the cited theorems also show that if all members of a party, �, 

form a party-list coalition completely isolated from the rest of the network while 

candidates of other parties do not, the party � can still count on the two guarantees 

above.  

Guarantee 1, the guarantee of proportionality or guarantee of the minimum number of 

elected candidates throws away the fractional part of the party’s vote share and is, thus, 

imperfect. However it is the same guarantee that exists for solid coalitions in single 

transferable voting systems (Dummett 1984) and that has been pointed out to be the 

justification to describe single transferable voting systems as proportional systems 

(Tideman 1995).   

The political network system can, thus, be used as a proportional representation 

electoral system. However, if, for example, no candidate chooses any neighbors at all, 

there will be no proportionally and the winning candidates will simply be the most 

voted one’s. Single transferrable voting systems also can be used in proportional or non-

proportional ways and are called semi-proportional (Norris 1997). Therefore we also 

say that the political network system is a semi-proportional representation system. 

Figure 5: party-list structure with party virtual candidates 
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Parties are treated as virtual candidates that can be voted, but not elected. The party 

virtual candidates’ neighbors are simply their members and the percentages of transfer 

to them are all identical. These virtual candidates are eliminated in the beginning of the 

election, what causes their votes to be divided among the neighbors. This allows our 

generic algorithm for vote transferring to handle non preferential votes unchanged and 

also simplifies the party-list structure, like in Figure 5.  

The party-list structure mimics most open party-list systems, however, once the political 

network system has been adopted, the network structures may evolve in ways that will 

depend on the candidates, on the parties and on the voters. Candidates can potentially 

choose their neighbors individually, but each party can create its own rules restricting 

what their members can do. Electors, of course, can consider the choices made by 

parties and candidates before deciding their votes. 

At least, a candidate could avoid transferring votes to party colleagues that were 

involved in any scandals. They could also easily point out which members of their own 

parties they really trust, like in Figure 6. 

Figure 6: political network with free connections within parties 

 

 

Note that, the party represented by octagons chose not to use the extra freedom offered 

by the political network and formed a party-list coalition. As stated, this party still 

counts on guarantees 1 and 2 of party-list structures.  

The candidates of the party represented by circles do not form a party-list coalition, but 

they form what we call a network solid coalition. In a network solid coalition, votes can 

go indirectly from any candidate to any other candidate in the coalition and no votes can 
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go to candidates outside it. The guarantee of the minimum number of elected candidates 

holds for network solid coalitions, what is very much like what happens with solid 

coalitions in single transferable voting systems. On the other hand, because the circle 

party members are now expressing preferences in respect to other members, the exact 

candidates that will be elected are not anymore guaranteed to be the ones that received 

more votes individually.  

If they want, parties may only allow its members to define a small part of their 

percentages of transfer to specific members. A percentage of, let’s say, 90% could be 

enforced to go to the party (through a party virtual candidate) and thus be evenly shared 

by all other members. Even with reduced power, individual candidates choices could 

still bring useful information to the voters. 

On the other hand, parties may do the opposite and allow members to freely decide how 

they will transfer almost 100% of their votes, but still force a non-zero percentage of 

votes, doesn’t matter how small, to go to the virtual party candidate. In this case, the 

party will still form a network solid coalition and count on the guarantee of the 

minimum number of elected candidates.    

Latter, some parties may colligate with other parties as seen in Figure 7.  

Figure 7: political network with free connections within some parties 

 

 

If they prefer, parties can make weaker colligations, like in Figure 8. The connection 

between the square party and the circle party, can involve a very low percentage of 

transfer, in such way that almost 100% of the votes of each party would remain within it 
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except if it had no more remaining candidates. In this case votes would be automatically 

inherited by the other party. Thus, a party could express preferences for other parties 

without really mixing with it. 

If a political network system replaces a most open party-list system, it is either possible 

that all parties merge into a fully flexible political network or that, basically, nothing 

happens and the network stays still with a party-list network structure. However, the 

network may also evolve to semi flexible structures where different parties form 

coalitions with different characteristics. What will actually happen, depends on the 

actions of parties and candidates which, in turn, will be submitted to the surveillance of 

the voters.   

Figure 8:limited party colligations 

 

6. Vote transfer processes 

The formal proof that there are vote transfer processes satisfying the definition of the 

political network system and that they all converge to the same result is left to the 

appendix. In this section we present only key ideas. 

Cycles in the network generate an infinite sequence of vote transfers. While the votes 

circulate, some of them reach remaining candidates where they stop, but some reach 

non remaining candidates from which there is no path to any remaining candidates and 

they are, eventually, discarded. Vote discards push the quota down, creating a surplus of 

votes in all elected candidates and possibly causing more vote discards. While the 

number of votes in all elected candidates is not equal to the current quota, the process 

cannot stop. Moreover, we avoided the introduction of details in the definition of the 

system and the precise moment of any transfers or discards is free to vary. Besides that, 
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nothing in the definition prevents vote packages from being split into smaller packages 

and it is optional to join packages that came from different paths, but currently belong 

to the same candidate and transfer them together from this point on or not to do so. 

Thus, vote transfer processes are not so regular and we could not prove that they all 

converge to the same state of equilibrium simply calculating limiting properties of a 

Markov chain, like eigenvectors or absorbing probabilities.   

The reason why we allowed such a degree of freedom in the vote transfer processes is 

that if we had adopted any particular policy for the vote transfer sequence, we would 

have to defend that it was the best from a political point of view, what would be 

impossible. A better alternative was to face the complications derived from the granted 

freedom and prove that any processes that satisfy the minimum requirements for the 

vote transfer process in the definition of the political network system converge to the 

same state of equilibrium. 

If all non remaining candidates only had remaining candidates as neighbors, there 

would be no infinite vote circulation. Votes would be transferred once and stop. With 

this simpler structure we would be able to algebraically correlate the quota in the end of 

the process to the number of discarded votes and calculate them both solving equations. 

Our goal is, thus, to remove from the network all edges going to non remaining 

candidates, without modifying the result of the vote transfer process.  

Once we know how to remove one edge without changing the result of interest, it 

becomes easy to remove them all. Procedure 9 of the appendix does this job, removing 

an edge going from a candidate �� to a candidate ��, that is, it removes �� from the 

neighbor set of ��, where  �� is a non remaining candidate. The candidate �� can be any 

candidate, but since his or her outgoing edges would only be used after he or she has 

ceased to be a remaining candidate, ��, can be treated as if he or she was a non 

remaining candidate too and Procedure 9 acts accordingly. 

We show a copy of this procedure bellow, where 	
� is the set of current neighbors of a 

candidate �� and �
�� is the current percentage of votes that go to a candidate �� if a 

direct vote transfer is originated in a node ��. If �� is not a neighbor of ��, �
�� is 

considered to be zero.  

The virtual discard candidate ��, was created with the role of receiving the votes that 

should be discarded. Before starting the election process, all candidates without any 

neighbors, whose transferrable votes, therefore, would always be discarded,  have �� 



inserted in their neighbor set with a percentage of transfer equal to one. Procedure 9 

counts on that. 

If �� and �� were the only neighbors of each other, any votes going from�� to �� would 

circulate forever. They cannot reach a remaining candidate and can be discarded 

immediately. Making the neighbor set of  �� equal to {��}, achieves exactly that.  

Otherwise, votes that would go from �� to �� would latter go to the neighbors of ��, 

who, after the edge removal, must receive the votes directly from ��. Thus, �� is 

replaced in the neighbor set of �� by his or her neighbors.  

Procedure 9: ���������������������(!", !�)  

1. If 	
� = {��} and 	
� =  {��} 

a. 	
� ← {��} 

b. ��� ← 1 

2. Else 

a. 	
� ← 	
� − {��} + 	
� −  {��} // eliminates �� from the neighbor set of ��, 	
�, but adds all neighbors of  �� to 	
�, excepts for �� itself. 

b. ∀,|�� ∈ 	
� 
i. �
�� ← (�
�� + �
�� ∙ �
��)/(1 − ��� ∙ ���)  // corrects the percentages 

of transfer to each neighbor 

 

The percentages of transfer must, of course, be adjusted. If �� is not a neighbor of ��, it 

is easy to see that for any ��,  �
�� ← (�
�� + �
�� ∙ �
��) does the job. The percentage to go 

from �� to �� is just incremented by the amount of votes that would go from �� to �� 

and then from �� to ��. 

If �� is a neighbor of ��, we can focus on the votes going back and forth between �� and �� and observe that, while this happens, some votes keep going to their other neighbors. 

The percentage of the first transfer from �� to a neighbor �� is �
�� and in every bounce 

the amount of votes that go from �� to ��, is smaller than in the previous bounce. It is 

not difficult to see that the rate of the decrease is given by ��� ∙ ��� . The percentage of 

the first transfer from �� to �� is �
�� ∙ �
�� and in every bounce, the amount of votes that 

go from �� to ��, is also decreased at a rate given by  ��� ∙ ��� . So the total amount of 

votes that go to �� is the sum of two geometric series. Algebraic manipulations lead to 

the formula  �
�� ← (�
�� + �
�� ∙ �
��)/(1 − ��� ∙ ���). 



Of course, the sequence of back and forth transfers between �� and �� would not occur 

with a clear separation from all other transfers and discards. Instead, it would be 

obfuscated by intercalated transfers between other candidates, by possible vote package 

splits and mainly by joins with other vote packages that could reach candidates �� and ��. In the appendix, we handle this details and in Lemma 9 we formally prove that the 

use of Procedure 9, indeed, cannot change the result of the vote transfer process. 

Note that the edge removal process does not differentiate elected from eliminated 

candidates. They are both just intermediate nodes, while the remaining candidates are 

the ultimate targets of all the flow in the network.  We can say that the network structure 

modified by Procedure 9 is equivalent to the original structure in respect to the flow of 

votes toward the remaining candidates. 

Once we have removed all edges going from non remaining candidates to other non 

remaining candidates, all transfers become direct to remaining candidates and all vote 

discards become represented by a transfer to ��. Thus, we can write: 

01 = 2 (0
� − 34 )∀56∈7 ∙ ��� + 2 0
� ∙ ���∀56∈8 , 
01 = 0
 − 9 ∙ 34 , 

where 01  is the number of votes that will be discarded in the vote transfer process, 0
� is 

the number of votes in candidate �� before the vote transfer process and ��� is the 

percentage of transfer from �� to ��, which represents the percentage of transferrable 

votes of �� that should be discarded. At the same time, 7 is the set of all elected 

candidates and 8 is the set of all eliminated candidates. 0
  is the number of valid votes 

before the vote transfer process,  9 is the number of seats in the dispute and 34  is the 

current quota after the vote transfer process. 

The equation system is linear and has only one solution, that is given by 

34 = 0
 − ∑ 0
�∀56∈7∪8 ∙ ���<9 − ∑ ���∀56∈7 = . 
This way, we can obtain the same result that would be achieved by the infinite process 

in a finite and deterministic way. Since the obtained result does not depend on details 

about the original infinite vote transfer process, like the order of transfers and discards 

or the occurrence of joins and split of vote packages, that proves that any suitable 

infinite vote transfer process converges to the same state of equilibrium. 



In practice, we don’t need a full edge removal process for each vote transfer process. 

We only need to remove all edges going to candidates that have just been elected or 

eliminated and proceed using the modified structure from this point on. 

Having only direct transfers to handle and counting on a formula to update the current 

quota, the proofs of the properties of the political network system like the insensitivity 

to the order of elections and eliminations and the minimum number of elected 

candidates for network solid coalitions become much easier, but are still laborious and 

are left to the appendix. 

7. Selection of key players and social network simplification 

In the political network electoral system, ? candidates form a social network and the 

system picks 9 of them to fill available seats in some political house. The 9 candidates 

are chosen in order to be a proportional representation of the constituency that voted for 

them. Other electoral systems also target proportional representation, what recognizes it 

as an important goal, but they work over much more rigid structures like lists, not 

arbitrary graphs. So, the political network electoral system extends proportional 

representation to social networks. 

The key players of a social network are the nodes that are considered “important” with 

regard to some criteria (Ortiz-Arroyo 2010). If we consider proportional representation 

to be  this criteria, we will get very close to the problem that is solved by the political 

network electoral system. We only need a few adjustments to “elect“ key players that 

offer a proportional representation of the network.  

Let’s consider every node in a social network to be a candidate. If there are measures of 

the strengths of the connections between nodes, as long as all outgoing edges of each 

node are normalized to sum one,  they can be used to define the percentages of vote 

transfer. Otherwise, uniform percentages of transfer may be adopted.  

If there are any weights associated to the network nodes, they should be used as the 

initial number of votes for each candidate. Otherwise, the simplest alternative is just to 

give one vote to each node. In this case, because every node starts exactly with the same 

number of votes, it is important use some centrality measure as a tie breaker.  

If we want, we may not consider all nodes of the network to be candidates, but only 

those that satisfy some specified restrictions. In this case, we should eliminate all other 

nodes from the election in the way we usually eliminate virtual party candidates. 



Let’s compare this method of selecting key players to alternative strategies with an 

example. To make it simple, suppose that the network has 4 completely isolated 

components. The first has 60 nodes, being 3 of them connected to every other node in 

the component and all others connected only to this 3 central nodes. The second has 40 

nodes, one them connected to every other node in the component and the others 

connected only to the central node. The third and forth components have 25 nodes each 

and also follow the pattern of having one central node connected to every other node 

and the others connected only to the central node. Let’s suppose that we can afford only 

3 key players. 

Any selection method that is based on centrality measures (Freeman 1978) and that does 

not worry about redundancy will tend to either pick the 3 nodes of the big component or 

none of them. Since these 3 nodes are structurally identical, they will draw in any 

centrality measure. If one goes to the top of the rank, the others will go too. If one goes 

to the bottom, so do the others. Clearly, neither of these two alternatives is satisfying.  

Borgatti (2006) recognized that simply filling the set of key players with the most 

central individuals does not suffice and articulated two different goals for the set of key 

players considered as a whole. The first, called KPP-Pos is related to optimally 

diffusing something through the network using the key players as seeds, while the 

second, called KPP-Neg, is related to maximizing the fragmentation the network with 

the removal of the key players. None of these goals is equivalent to finding a 

proportional representation of the network, but the first is somewhat closer and it is the 

only one we will consider here.  

The algorithm proposed by Borgatti to solve KPP-Pos, searches for the set of key 

players, 7, that maximizes the sum of the inverses of the distances from 7 to each node 

outside it. The distance from 7 to any node outside it is considered to be the minimum 

distance from any member of 7 to the node. 

For such an algorithm, picking a second central node from the big component in our 

example problem accomplishes nothing and, so, it chooses just one of them. The set of 

3 key players is completed with one center node from the medium-sized component and 

one center node from any of the small ones.  

Ortiz-Arroyo (2010) tackled KPP-Pos using a different strategy, which was to pick as 

key players the nodes whose individual removals would cause the greatest reduction  in 

the connectivity entropy of the network as a whole. As shown in the paper,  connectivity 

entropy does account for the existence of redundant nodes in the network. However, 



before picking a particular node as a key player, the proposed algorithm never considers 

if the redundant nodes had themselves been picked or not. As a consequence, each of 

the 3 central nodes of the biggest component in our example problem receives a low 

score for being redundant with the others and the component ends up without any key 

players at all. 

Let’s check what happens in our example when the political network electoral system is 

used to select the key players. The quota starts at 150/3=50 votes. Nobody has votes 

enough to be elected yet and the system proceeds eliminating the peripheral nodes of all 

components. After only the central nodes remain, no votes have been discarded,  the 

central nodes of the biggest component have 20 votes each, the central node of the 

smallest components have 25 votes each and the central node of the medium-sized 

component has 40 votes. One of the central nodes of the big component is eliminated, 

what causes the other two to inherit its votes. With 30 votes each, they remain in the 

dispute while the central nodes of the smallest components are eliminated. With the 

vote discards that occur as a consequence of the elimination of the last nodes of the 

smallest components, the quota is reduced to 100/3 votes and the central node of the 

medium-sized component is elected. The surplus votes of the just elected candidate are 

discarded and the quota is reduced to 30 votes, causing the two remaining nodes to be 

elected.  

In our example, Borgatti’s solution, avoids redundancy in the set of key players, picking 

at most one central node from each component. If the biggest component in the example 

had 1000 nodes instead of 60, nothing would change. 

The political network electoral system chooses 2 nodes from the big component, 1 from 

the medium-sized component and none from the smallest ones. If the big component 

had 1000 nodes, all of its 3 central nodes would have been picked. Under this criterion, 

some redundancy is accepted to represent better a big number of nodes or having more 

influence over them. The idea here is that one node cannot really play the role of three 

even if it has all required connections. That may or may not be true depending on the 

goal. 

There are few methods for selecting sets of key players in social networks that go 

beyond centrality measures and the political network electoral system gives rise to a 

new one.  We have not deeply investigated for which applications this method would be 

good, but we list two contexts where it could be used to, at least, provide some insight.  



In the political network election process, a candidate transfers votes to others when he 

or she is eliminated or when he or she is already elected and has a surplus of votes. In 

disputes for relevant positions within an organization, potential contenders that don’t 

believe to be strong enough to win, may withdraw and support someone else. At the 

same time, someone who has easily guaranteed his or her space may, very well, help a 

comrade to get a seat at the table too, showing that informal disputes somewhat 

resemble proportional representation elections. Since organizations can be modeled as 

social networks, the political network election system can be used to investigate the 

balance of power within them and find unofficial or future leaders. Of course, what is 

going to be used to define the strengths of the relations among people and what will 

count as the initial number of votes for each of them is domain specific and will be 

decisive for the relevance of any conclusions. 

Now suppose that we are analyzing an economy. We could use the sizes of the 

companies as votes and commercial or similarity relations as edges to start a political 

network election. The election would distribute the whole economy evenly among key 

players (each of them would stand for a share that would be  exactly equal to the value 

of final quota), what can provide an interesting view. Some of this key players would be 

there just for their own size. Others would be representing sets of related small 

companies, whose weights would have been transferred to their representatives. Some 

other players, would have been selected for having received the surplus weight of some 

very big companies.  

We can obtain some extra enlightenment simplifying a network using key players. Such 

players could have been selected by a network election process,  by any other automatic 

method or even having been picked manually. To make the simplification, we can look 

at the key players as the ultimate targets of all the flow in the network, what, in an 

election process, is the role of the remaining candidates. We can then eliminate all edges 

going to non key players using Procedure 9 and obtain a structure that is equivalent to 

the original one in respect to the flow toward the key players. Only edges going to key 

players would remain in the simplified network, but their strengths would reflect all 

removed ones. The indirect relations among key players would become explicit. The 

indirect relations between any individual non key player and any key player, would 

become explicit too. The modified structure would offer a simplified way to understand 

the role of any node in the network based on how it relates to the key players.  



The time complexity of the election algorithm (see appendix, Theorem 6) is @(9 ∙?A + ?B/C), where ? is the number of candidates, C is the number of processors and 9 is the number of seats available (or the number of key players). This is cubic on the 

number of candidates (or number of nodes) and too slow for big social networks. Thus, 

an approximation may be necessary.  In the ?B/C term, a quadratic factor is due to the 

number of possible neighbors of each candidate, that can be as big as the whole 

network. In the 9 ∙ ?A term, a linear factor is due to the same thing. If we accept to 

drop the weakest links, we can limit the number of neighbors of any candidate to a 

constant D. In this case, the complexity of the algorithm becomes @(9 ∙ ? ∙ D + ? ∙DA/C), what is linear in the number of nodes and thus much more manageable. 

8. Conclusion 

We presented a new electoral system where party-lists are replaced by a fully flexible 

social network as a vote transfer mechanism.  This system makes relationships among 

candidates explicit and thus allows their full liability for those who can benefit from 

their votes and  provides to the electors intuitive and difficult to disguise information 

about  them.  We are not aware of any electoral system that induces a greater degree of 

transparency.  

This system, neither increases the complexity of the act of voting like single 

transferrable voting systems, nor restrict voters options like closed party-list systems or 

single member district voting systems, allowing them to choose from possibly large 

ranges of candidates.   

It is also relevant that the political network system can mirror the key properties of a 

most open party-list system through a particular set of neighbor choices, which can be 

freely made by the candidates or imposed by the parties, what reserves to the latter a 

more important role than in single transferrable voting systems. Moreover, there is a 

smooth path from this restricted network to a fully flexible one and it is even possible 

that semi flexible networks turn out to be the best structures for several electoral 

systems. Such semi flexible networks may reflect competing  party policies that can 

evolve under the pressure of voters and that can benefit from the convenient guarantee 

of the minimum number of elected candidates for network solid coalitions.  

The insensitivity of the number of current votes in any candidate to the order of prior 

eliminations and elections during the whole election process is also a pleasant 

mathematical property that prevents the introduction of randomness and unfairness in 



the election and eliminates, what would otherwise be, an important trigger for tactical 

voting. This reinforces our belief that political networks can be a useful instrument in 

different contexts. 

As a collateral effect, the political network electoral system gives rise to a new method 

for selecting key players in social networks, whose goal is to find proportional 

representations of them. Besides that, the edge removal algorithm developed to handle 

vote transfer processes engenders a mechanism to transform the network into a 

simplified version where only relations involving key players exist, but where the 

strengths of such relations have been updated to reflect all relations among non key 

players in the original network. We listed two possible uses for these resources, but did 

not go deep into them. We leave this task as future research. 
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Political Network Electoral System 

Appendix 
In this appendix we model the political network electoral system mathematically and 

prove that: 

1. the number of candidates that are declared elected by the political network 

system matches the number of available seats (Theorem 1);   

2. any implementation that satisfies the definition of the political network system 

produces the same set of elected candidates, regardless of implementation details 

that are not specified in this definition (Theorem 2). 

3. the system can be implemented by a finite computer procedure (Theorem 3), 

using acceptable amounts of processing time (Theorem 6) and space (Theorem 

7); 

4. to better understand the structure of the political network, we can generate an 

alternative network structure that, in terms of vote transferring, behaves exactly 

as the original network structure would behave if a certain arbitrary set of 

candidates had been elected or eliminated and where none of them play the role 

of middle men in any vote transferring path (Theorem 8); 

5. the order in which candidates are declared elected or eliminated does not affect 

the final result of the election (Theorem 9); 

6. solid network coalitions (among them party-list coalitions) are guaranteed to 

elect at least the floor of 
��∙�� , where �� is the number of votes obtained by the 

party, � is the total number of valid votes and � is the number of seats 

available, just like in typical party-list systems and solid coalitions in single 

transferring voting systems  (Theorem 4 and Corollary 10); 

7. the elected candidates of each isolated party-list coalition are always those who 

received more votes individually, just like in most open party-list systems 

(Theorem 5); 

We also show that the rounding errors introduced by the use of a finite precision 

computational implementation won’t break the guarantee of the total number of elected 

candidates (Corollary 6) neither the guarantee of the minimum number of elected 

candidates in a solid network coalition (Corollary 9). 



Basic Definitions 

In this section, we present a definition for the political network electoral system that is 

totally equivalent to the one in the main text, but that is subdivided in useful concepts 

that will be referred from the theorems.  

Definition 1: political network electoral system 

The political network electoral system is an electoral system such that, starting from the 

conditions specified in Definition 2, the elected candidates are determined by Procedure 

1 and where the operation that performs vote transfers, vote discards and adjusts in the 

current quota satisfies Definition 5. 

Definition 2: conditions to start the processing of votes 

The conditions to allow the start of vote processing in the political network electoral 

system are  

• The candidates need to form a political network (Definition 3); 

• Voters should have voted in one and only one candidate. 

Definition 3: political network 

A political network is a set of ? candidates to 9 seats where each candidate, �, has a 

set of neighbor candidates and each neighbor is associated to a percentage of votes to be 

transferred to him or her if any transfer of votes takes place with origin in �. If the a set 

of neighbors is not empty, the sum of all percentages associated to its members is one. 

Procedure 1: general procedure of the political network electoral system 

1. Eliminate party virtual candidates  

2. Transfer and discard votes 

3. While there are remaining candidates (Definition 4)  

a. While there are remaining candidates with at least as many current votes 

(Definition 11) as the current quota (Definition 10)  

i. Declare candidates with at least as many current votes as the current 

quota to be elected 

ii. If there are no remaining candidates with more than zero votes and 

none of them  can receive votes from any elected candidate or there 

are no remaining candidates with more than zero votes and all seats 

are filled   

1. Fill the remaining seats declaring some candidates elected 

using any arbitrary criterion, eliminate all remaining 

candidates, terminate the election and exit 



iii. Transfer and discard votes 

b. If there are remaining candidates 

i. Eliminate the candidate with least current votes 

ii. Transfer and discard votes 

Definition 4: remaining candidate 

A remaining candidate is a candidate that has not yet been declared to be elected or 

eliminated. 

Definition 5: procedure to transfer votes and discard votes 

The procedure to transfer and discard votes is any procedure that in a finite number of 

steps, results in the same number of votes in any candidate as a, possibly infinite, 

process that 

• never transfer non transferrable votes (Definition 6); 

• changes the number of votes in any candidate only through direct vote transfers 

(Definition 7) or votes discards (Definition 8); 

• converges  to a state where  

o all transferable votes have reached remaining candidates except for the 

votes that cannot reach a remaining candidate through any number of 

direct vote transfers; 

all transferrable votes that cannot reach a remaining candidate through any number of 

direct vote transfers have been discarded. 

Definition 6: transferrable votes 

The transferrable votes are: 

• all current votes of an eliminated candidate; 

• all current votes beyond the current quota (Definition 11) of an elected 

candidate. 

Definition 7: direct vote transfer 

A direct vote transfer is the subtraction of C votes from the current number of votes of a 

candidate �� and the addition of C ∙ ��� votes to the current number of votes of each 

neighbor �� of ��, where ��� is the percentage of votes that �� chose to transfer to ��. 

Definition 8: vote discard 

To discard an amount of votes is to subtract that amount from the total number of 

current valid votes and from the current number of votes of the candidate to whom they 

currently belonged. 

Definition 9: current quota 



The current quota is equal to the number of current valid votes (Definition 11) divided 

by the number of seats being disputed in the election. 

Definition 10: current number valid votes 

The current number of valid votes is the number of valid votes minus the number of 

votes that have already been discarded by the election procedure. 

Definition 11: candidate current number of votes  

The current number of votes of a candidate is the number of votes received by the 

candidate from the voters plus to the total number of votes transferred to the candidate 

from other candidates  minus the total number of votes transferred from the candidate to 

other candidates minus the total number of votes of the candidate that were discarded 

during the execution of Procedure 1. 

Mathematical representation 

In the political network electoral system, each candidate �� | 1 ≤ F ≤ ?, where ? is the 

number of candidates, chooses a set of neighbors, 	� = GH��  I1 ≤ , ≤ C�}, where H�� is a 

neighbor of ��  and C� is the number of neighbors of ��  and indicates for every 1 ≤ , ≤C� the percentage of votes, ��� that should be transferred to H�� if he or she is eliminated 

from the election or has more votes than necessary to be elected in such way that,  ∀	� ≠ ∅, ∑ ���LM�MN6 = 1.  

It happens that a candidate is not forced to choose at least one neighbor. Only in this 

case, there is no way to transfer his or her votes and the equality above does not hold. 

Any transfer of votes with origin in a candidate without neighbors becomes a vote 

discard. 

To handle this condition automatically, we defined �� as a virtual discard candidate that 

receives all votes that should be discarded. If a candidate ��  chose no neighbors, it is 

defined that 	� = {��} and  ��� = 1, meaning that all transfers are done directly to the 

discard virtual candidate, sparing us from an explicit vote discard. Thus, we have that, ∑ ����M�MN6 = 1 for any candidate.  

If, at any moment, there is a cycle in the network containing no remaining candidates, 

the transferable votes of any candidate in the cycle will have to be discarded. In this 

case, we do the discard subtracting such votes from their owners and adding them to  ��. The fact that �� is not their neighbor, for this operation, does not matter.  



Relations in the political network are not symmetric, so �� ∈ 	� does not imply that 

�� ∈ 	�. 
We call, �, the set of virtual candidates representing parties. They can be voted but 

cannot be elected and are eliminated in the very beginning of the election. Their votes 

are transferred to the members of the party. 

So, ∀�O ∈ �, 	O = {HPQ ∈ �O} ∧ �O� = 1/|�O|, where �O is the set of candidates that 

are members of the party that is represented by the virtual candidate �O. 

The political network is thus a directed graph (Diestel 2000) where the nodes are the 

candidates (being one of them the virtual discard candidate and some of them the virtual 

candidates representing parties) and there is an edge going from �� to �� if and only if 

��  ∈ 	�. Every edge is annotated with a real number between zero and one, which is the 

transfer percentage from �� to ��. The number annotated in the outgoing edges of any 

node sum one.  

Let 9, be the number of seats in dispute, 0� the number of individual votes received by 

candidate �� and 0 = ∑ 0�LM�MS , the total number of valid votes. 

We call 0� the number of votes in candidate �� that corresponds to the total number of 

discarded votes. Initially, 0� = 0. 

The number of current valid votes is 0
 = 0 − 0� and is initially equal to 0. The current 

quota is 3
 = 0
/9.  At the same time, 0
�, is the current number of votes in �� or the 

number of votes that currently belong to ��. 
We call the set of already elected candidates 7, the set of already eliminated candidates 8  and the set of remaining candidates �.  We will call ! the set of all candidates 

including the virtual candidates representing parties, but not including the virtual 

discard candidate. 

We call a vote package a structure �0 = (�, 0, UV), where � is a candidate, 0 is a real 

number representing the amount of votes in the package and UV is an identifier that 

gives the package a non ambiguous identification.   

Implementation of the political network electoral system 

In this section we present an implementation for the political network electoral system 

which leaves some procedures open. We will show latter that any implementation that 

satisfies the definition of the political network system is equivalent to this 

implementation with some variation of the procedures left open. 



As it can be directly verified, Procedure 2, Procedure 3 and Procedure 4 are equivalent 

to Procedure 1. They just operate over the mathematical structures defined in the 

previous section. 

Procedure 2: central procedure of the political network election 

4. � ← !  //  Initially, all candidates are remaining candidates 

5. 7 ←  8 ← ∅ // Nobody is initially elected neither eliminated 

6. 0
 ← 0 // The current number of valid votes is initially equal to the number of valid votes 

7. ∀i, 0
� ← 0� // Initially each candidate has the number of votes that he or she received individually 

8. Call 8X���YZ������[ZX�Z��\!ZY]�]Z��^_Y]`�ZYP������^()  
9. While � ≠ ∅ 

a.  aℎcdefghFi = j]�Y��P\8X�k��]_Y]`�ZY^P������^() 
b. If (aℎcdefghFi)  8l�� 

c. If � ≠ ∅ 

i. Call 8X���YZ��]7Z^�_Y]`�ZY^P������^( ) 
 

Procedure 3: j]�Y��P\8X�k��]_Y]`�ZY^P������^() 

10. 74 ← {��|�� ∈ �^0
� ≥ 3
}; // Creates a temporary set containing those candidates 

who have just reached the quota 

11. While 74 ≠ ∅ 

a. 7 ← 7 + 74   // Puts the recently elected in the set of elected candidates 

b. � ← � − 74  // Removes elected from the set of remaining candidates 

c. If  o���k�8l��!�Y]����Y( )   
i. Call ��XX���Z�Y�Y���Z�^( ) 

ii. Call 8X���YZ�����Z�Y�Y�!ZY]�]Z��^( ) 

iii. ���[�Y ��[� 

d. Call `�ZY^P������^_Y]p�]Z��q[��Z(74 ); 
e. 74 ← {��|�� ∈ �^0
� ≥ 3
}; // others may be elected as a consequence of vote 

transfers and reduction of the current quota. 

12. ���[�Y PZX^� 

Procedure 4: 8X���YZ��7Z^�_Y]`�ZY^P������^() 

13. 84 ← {min (��, ∀��  ∈ �)} // Creates a temporary set containing only the eliminated 

candidate 

14. 8 ← 8 + 84  // Adds that set to the set of eliminated candidates 



15. � ← � − 84  // Removes the set of eliminated candidates  from the set of remaining 

candidates 

16. Call `�ZY^P������^_Y]p�]Z��q[��Z(84 )  

In Procedure 4, min (��, ∀��  ∈ �) is a function that returns the remaining candidate 

with the least number of votes. It is assumed that if there is a tie some arbitrary criterion 

will choose a single candidate among the ones with least votes to be the result of min (��, ∀��  ∈ �). 

Procedure 5: 8X���YZ������[ZX�Z��\!ZY]�]Z��^_Y]`�ZYP������^() 

17. 8 ← 8 + � // Adds all virtual party candidates to the set of eliminated candidates 

18. � ← � − � // Removes the virtual party candidates from the set of remaining 

candidates 

19. Call `�ZY^P������^_Y]p�]Z��q[��Z(�)  

We still need to write `�ZY^P������^_Y]p�]Z��q[��Z(!4 ), where !4  is the set of 

candidates that have been just elected or eliminated, in a way that incorporates all 

variations admitted by Definition 5 and that can help us to prove our target theorems 

latter. We do that through Procedure 6, Procedure 7 and Procedure 8. 

Procedure 6: `�ZY^P������^_Y]p�]Z��q[��Z(!4 ) 

20. Call p�]Z��`����X���kZX���u��"!�Y��Y��Y�X\(!4 ) 
21. 34 ← <0
 − !ZXk[XZ��`��ZXo�^kZ�]^()=/9 // Calculates the correct quota for the end of 

this procedure 

22. Call `�ZY^P������^_kk��]�Y�`�q[��Z(34 )  

23. 3
 ← 34  
 

Procedure 6 starts calling procedure p�]Z��`����X���kZX���u��"!�Y��Y��Y�X\(!4 ). The 

definition of the political network electoral system does not authorize any changes in 

the network. Bellow, we define this procedure accordingly. 

Definition 12: p�]Z��`����X���kZX���u��"!�Y��Y��Y�X\<!4 = 

A suitable implementation of p�]Z��`����X���kZX���u��"!�Y��Y��Y�X\(!4 ) is any 

implementation that only changes the structure of the political network in ways that 

cannot make the result of the election different from the result that would be obtained if 

no changes were made. 

Procedure 6 depends on the function !ZXk[XZ��`��ZXo�^kZ�]^() that is defined bellow.  

Definition 13: !ZXk[XZ��`��ZXo�^kZ�]^() 



A suitable implementation of the !ZXk[XZ��`��ZXo�^kZ�]^() is any implementation that 

returns a value that makes it possible for Procedure 6 to end in a way that is consistent 

with the definition of the electoral system. 

We will show latter (Lemma 14) that the value that can be returned by 

!ZXk[XZ��`��ZXo�^kZ�]^() is unique and can, indeed, be calculated with the information 

that is available in the beginning of Procedure 6. 

Let’s now write Procedure 7, which implements a vote transfer process for a given 

target quota, assuming that, in the end, it will be correct.  

Procedure 7:  `�ZY^P������^_kk��]�Y�`�q[��Z<q4 = 

24. v ←  ∅ // creates a, initially empty, structure to contain all vote packages waiting to 

be transferred 

25. ∀�� ∈ 8|0
� > 0 // For all eliminated candidates that still have any votes  

a. _]]�Zk"Z�� xv, �0� = <�� , 0
� , ?UV=y // puts, in v,  a vote package containing 

all votes in the eliminated candidate. ?UV represents a new identifier 

b. 0
� ← 0 // No votes remain in the eliminated candidate 26. ∀�� ∈ 7|0
� > 34  // For all elected candidates with surplus votes  
a. _]]�Zk"Z�� xv, �0� = <�� , 0
� − 34 , ?UV=y // The packages associated to elected 

candidate contain only the surplus votes 

b. 0
� ← 34  // A number of votes identical to the quota is kept in the candidate 

27. Call `�ZY^P������^(|) 
Procedure 8:  `�ZY^P������^(v) 

28. ?} ← 0 // Variable ?}  is used to count the steps of the following loop till an 

arbitrary limit 9~�}�g�}  

29. While v ≠ ∅ ∧ ?} < 9~�}�g�} // while there are votes to be transferred and the 

arbitrary limit to the number of steps has not been reached 

a. <0�� = (�� , 04� , UV)= ← ������_�Zk"Z��(v) // 0�� is a package of votes built 

by a criterion that will be discussed latter, using votes in v. 04� is the number 

of votes in the package and differs from 0
�  which is the number of votes in 

the candidate.  

b. ∀���|��� ∈ 	� // For all neighbors of �� i. If ��� ∈ � ∪ {��}    



1. 0
�� ← 0
�� + 04� ∙ ��� // Transfer the votes according to the 

specified percentage. Such transfer represents a discard when ��� = �� 

ii. Else // votes will be transferred again  
1. _]]�Zk"Z�� xv, �0�� = <��� , 04� ∙ ��� , ?UV=y 

c. ?} ← ?} + 1 

30. 0� ← 0� + ∑ 04�∀��6∈v  // discards all votes that are still in v 

31. 0
 ← 0 − 0�  // adjusts the number of valid votes 

In Procedure 7, we created a structure, v, to contain all vote packages that are waiting 

to be transferred and passed such structure as a parameter to Procedure 8. 

We say that a vote package was processed by Procedure 8 when it was removed from v 

and returned  by ������_�Zk"Z��(v) and consequently submitted to the commands 

within the loop defined in the procedure. We define ������_�Zk"Z��(v) bellow. 

Definition 14: ������_�Zk"Z��(v) 

A suitable implementation of ������_�Zk"Z��(v) is any implementation that returns a 

package of votes �0 = (�, 0, UV) and removes it from v and that, if convenient, 

performs arbitrary join operations and arbitrary split operations to any packages in v, as 

long as it allows no package to stays forever in v. 

Lemma 1: existence of a suitable implementation of ������_�Zk"Z��(v) 

An implementation of ������_�Zk"Z��(v) that performs no joins or splits and returns 

the vote packages in a first in first out manner satisfies Definition 14. 

Proof: 

When a vote package, 0�, enters v, the number of packages ahead of it is finite. If all 

packages that are generated latter are put after 0�, it is guaranteed that for a sufficiently 

large value for 9~�}�g�}, 0� will be returned. ∎ 

Definition 15: canonical variation of ������_�Zk"Z��(v)  

The canonical variation of ������_�Zk"Z��(v) is the variation that performs no joins 

or splits and returns the vote packages in a first in first out manner.  

 

In the definition of the voting transfer process, transfers are direct. There is no 

intermediate structure. However, to prove our target theorems, we need to keep track of 

where each vote came from and not only of the total number of votes in each candidate. 

The structure v will help with that. 



We will show in Lemma 3, that any procedure that satisfies Definition 5 is equivalent to 

a variation of Procedure 6. Before that, we need a preparatory lemma. 

Lemma 2: amount of votes in each candidate after an operation of vote transferring 

In the end of `�ZY^P������^_Y]p�]Z��q[��Z(!4 ), any eliminated candidate �� has  zero 

votes and any elected candidate has 3
  votes, where 3
  is the current quota. 

Proof: 

By the definition of the political network electoral system, any votes in an eliminated 

candidate are transferable. The definition also says that  all transferrable votes must be 

transferred till they reach a remaining candidate, or, if that is impossible, they must be 

discarded. In any case, no votes can stay in the eliminated candidate. 

Any vote in an elected candidate beyond 3
  is also transferrable and thus cannot stay in 

the candidate. If such votes exist when `�ZY^P������^_Y]p�]Z��q[��Z(!4 ) is called 

they must be transferred or discarded and they cannot exist in the end of the procedure. 

At the same time, any candidate that is claimed to be elected, at that moment, has at 

least 3
  votes and since votes bellow 3
  are not transferrable there will never occur a vote 

transfer that will leave him or her with less than  3
  votes.  The possibility that, latter, 

the current quota could be changed in a way that makes it larger than the number of 

votes in the candidate also does not exist, since, by definition, it can only go down. This 

proves the present lemma. ∎ 

Lemma 3: covering of all possible vote transferring procedures by Procedure 6 

For any arbitrary implementation of the procedure `�ZY^P������^_Y]p�]Z��q[��Z(!4 ) 
that satisfies the definition of the political network electoral system there is a variant of 

Procedure 6  under which the number of votes left in every candidate �� converges to 

the number of votes left by the arbitrary implementation, when 9~�}�g�} tends to 

infinite. 

Proof: 

Definition 5 says that any implementation of  `�ZY^P������^_Y]p�]Z��q[��Z(!4 ) must 

achieve the same results as a, possibly infinite, process that works under some 

restrictions that are enumerated in the definition itself. Let’s call such canonical process 

���c�F��e��c��aa. 

In its end, ���c�F��e��c��aa will have to achieve a value, 34 , for the current quota 

(Definition 9). The function !ZXk[XZ��`��ZXo�^kZ�]^(),  which is still open, can return 

the value 9 ∙ (3
 − 34 ), where 3
  is the current quota in the beginning of Procedure 6 and 

lead the very same quota. 



Definition 5 determines that all vote transfers should be done through direct vote 

transfers (Definition 7). Other than that, ���c�F��e��c��aa can only discard votes that 

could not be transferred to a remaining candidate by any number of direct transfers. 

Thus, ���c�F��e��c��aa can only change the number of votes in any candidate through a 

sequence of operations, �� = (@L, @A, … , @�, … ), where  ∀F, @� is a direct vote transfer 

or a vote discard. Given the source candidate ��� and the amount of votes, 04�� , that are 

going to be transferred from ���, a direct transfer is fully determined, that is, we already 

know how many votes will go to each other candidate. A vote discard can also be 

described by the source candidate, ���, and amount of votes, 04�� to be discarded. So we 

can specify @� by   @� = (UaVFa���f�, ���, 04��), where UaVFa���f� is a Boolean 

separating transfers from discards. 

At any point between any two operations, the state of the full transfer process can be 

described by the number of votes, 0�, in each candidate ��. Note that the number of 

votes in �� determines the number o current valid votes and thus the current quota. 

The sequence of operations is restricted by the fact that only transferrable votes can be 

transferred or discarded. Thus,  ∀@�, ��� ∈ 7 ∪ 8, ∀@�|��� ∈ 7, 04�� ≤ 0� − 31 ≤ 0� − 34  and ∀@�|�� ∈ 8, 04�� ≤ 0�, 
where 31  is the current quota immediately before the application of @�. 
Let’s show that we can simulate �� with a variation of Procedure 6. We will do that, 

starting with the canonical implementation of ������_�Zk"Z��(v) and performing 

convenient package joins and splits. Let’s call the process that is driven by the variation 

of Procedure 6, �c�����c��aa. 

Let’s call o the set of candidates from whom there is no path to a remaining candidate 

in the political network and o�  the set of candidates from whom there is such a path. 

Clearly, votes in candidates that belong to o can never reach a remaining candidate. 

They can be discarded by the ���c�F��e��c��aa at any moment and must be discarded by 

it at some point. Votes in a candidate �  that belongs to  o�  cannot be discarded. With 

enough direct vote transfers, at least a certain percentage � > 0 of them would 

eventually reach a remaining candidate.  If the ���c�F��e��c��aa chose to discard � > 0 

votes of the 05 votes in �, even if � was very small,  after the discard, it would still only 

count on direct vote transfers to transfer votes. Direct vote transfers are inflexible, thus 



the ���c�F��e��c��aa could not force more than the same percentage � of the votes left 

in � to reach remaining candidates. That would be equal to � ∙ (05 − �) < � ∙ 05, 

violating the definition of the political network system, which requires that all votes that 

can be transferred to remaining candidates are transferred to them. 

Let’s call 0�� the number of votes in candidate �� in the �c�����c��aa, while 0� is the 

number of votes in candidate �� in the ���c�F��e��c��aa. Let’s call 0�� the total number of 

votes in packages associated to �� in v in the �c�����c��aa.  

We say that the state of the �c�����c��aa is equivalent to the state of the 

���c�F��e��c��aa if and only if   ∀,|�� ∈ � ∪ {��}, 0� = 0�� ∧ 0�� = 0, 

∀,|�� ∈ 8 ∩ o�, 0� = 0�� ∧ 0�� = 0, 

∀,|�� ∈ 7 ∩ o�, 0� = 0�� + 34 ∧ 0�� = 34 , 
0� + 2 0�∀�|5�∈8∩o + 2 0� − 34

∀�|5�∈�∩o = 0�� + 2 0��∀�|5�∈8∩o + 2 0��∀�|5�∈�∩o  

∀,|�� ∈ 8 ∩ o, 0�� = 0 

∀,|�� ∈ 7 ∩ o, 0�� = 34 , 
By Lemma 2, in the end of `�ZY^P������^_Y]p�]Z��q[��Z(!4 ) the number of votes in 

any eliminated candidate is zero and the number of votes in any elected candidate is 

equal to the current quota. This means that under the ���c�F��e��c��aa their number of 

votes must converge to such values. 

Thus, in the ���c�F��e��c��aa, after a large enough number of steps, �~��g?D9}�g�}, 

we will have that ∀,|�� ∈ 8, 0 ≤ 0� < � and ∀,|�� ∈ 7, 0 ≤ 0� −  34 < �, for any small 

�. At the same time, when , 9~�}�g�} is reached �c�����c��aa ends and all votes in v 

are discarded, making ∀,, 0�� = 0.  

If the state of ���c�F��e��c��aa after �~��g?D9}�g�} is equivalent to the state of  

�c�����c��aa at its end, it is algebraically implied that ∀, ≠ 0, I0� − 0��I < �, and 

I0� − 0��I < ? ∙ �, where ? is the number of candidates. Thus the two process must be 

converging to the same state when 9~�}�g�} tends to infinite.  

We must show that the equivalence between the two processes can always be kept. 

Before the first direct transfer occurs, Procedure 7 puts in v, vote packages that 

establish the equivalence directly.  



From that point on, it is easy to check that for every @�, if @�is a vote discard, nothing 

needs to be done, if it is a vote transfer, ������_�Zk"Z��(v), can always return the 

vote package 0�� = (���, 04��, UV) what leads Procedure 8, to keep the state of the 

�c�����c��aa equivalent to the state in the canonical process immediately after the 

application of @�.  
Note that, if the states were equivalent before the transfer operation, the necessary 

number of votes, is always available in v. Since ������_�Zk"Z��(v) can join and split 

packages, it can always form a single package with the correct number of votes and 

return it.  

The single package to be returned can be formed taking � packages, associated to ��� in 

their order of entrance in v, in such way that ∑ 0����� ≤ 04��, and join them, summing all 

their votes into the new package. If ∑ 0����� = 04��, the new package is done. If ∑ 0����� <04��, we can take the � + 1��package associated to ��� in | and split it in two, leaving 

the first package with 04�� − ∑ 0�����  votes. Adding this package to the package to be 

returned, it will be done. 

It is important to notice that, forming packages in the way described above guarantees 

that no package can be left in v forever, what is a requirement of Definition 14.  

So the equivalence can be kept proving the present lemma. ∎ 

Useful lemmas 

To easy the discussions to come, in this section, we show some useful lemmas. 

Lemma 4: election constant 

During the execution of Procedure 2, the sum of the total votes in real candidates, with 

the total votes in virtual party candidates, with the total number of discarded votes and 

with the total number of votes in vote packages in v is a constant equal to the original 

number of valid votes. 

Proof: 

Initially all votes are in real candidates or virtual party candidates and they correspond 

to the number of valid voters in the election, thus, at this moment the present lemma 

holds. It is easy to verify that additions to any of the values that are relevant to the 

present lemma are accompanied by equivalent subtractions  some other of this values, 

keeping the lemma valid.  ∎ 

Lemma 5: determination of additions and discards by the total amount of votes in processed 

packages 



In an execution of Procedure 8, the total number of votes, �0�, added to any candidate ��  ∈ � ∪ {��} are given by �0� = ∑ �0� ∙S��L ���, where �0�  is the total number of 

votes associated to candidate �� in packages that were processed by Procedure 8. 

Proof: 

It is direct from Procedure 7 and Procedure 8, that any addition of votes to any ��  ∈� ∪ {��} is a consequence of the processing of some package 0�� and is given by 

0� ∙ ���, where 0� is the number of votes in 0�� and ��� is the percentage of transfer from 

�� to �� specified in the structure of the political network. where �� is the candidate 

associated to 0��. The veracity of the present lemma is immediate. ∎ 

We will show in Lemma 8 and Corollary 4 , that we can join and split vote packages 

without changing the results of Procedure 8 and Procedure 7. This conclusion can be 

used both to prove that the joins and splits performed within ������_�Zk"Z��(v) in 

the proof of Lemma 3 do not change the results of the election and to prove that adjusts 

in the structure of the network performed within 

p�]Z��`����X���kZX���u��"!�Y��Y��Y�X\(!4 ) that happen to have an effect that is 

equivalent to joins of vote packages also do not change such results. 

Before proving  Lemma 8, we will need a few more definitions and preparatory lemmas. 

Every package 0�� processed by Procedure 8 can generate new packages and add them 

to v.  The processing of these packages, in turn, generate even more packages. Since 

every package is generated by the processing of a single parent package, the complete 

set of packages indirectly generated by  0�� form a tree whose root is 0��. 

Definition 16: vote package tree 

A vote package tree ~0� , with root 0��, is the tree composed by 0�� and any package 

generated by Procedure 8 when it process any package belonging to ~0� and where the 

parent of any package is the package from which it was generated. 

Corollary 1: identification of a vote package in a vote package tree 

Writing 0�� ≡ }���, we can uniquely indentify any package 0�� in the vote package 

tree with root 0�� by the sequence of candidates }��� = {����|0 ≤ i ≤ ℎ} , indicated in 

the packages that are in the path of length ℎ, from 0�� till 0�� in the tree, where 

���� = �� e ���� = ��. 

Proof: 

Since the processing of each candidate by  Procedure 8 cannot generate more than one 

package associated to the same candidate, we can identify the package by its parent and 



the candidate associated to it. Since the structure is a tree, the veracity of the present 

lemma is direct. ∎ 

Corollary 2: identification of a vote package in a forest of vote packages 

Writing 0�� ≡ (0�� , }���), we can uniquely identify a vote package 0�� in a forest of 

vote packages by the pair (0�� , }���), where 0�� is the root of the tree to which 0�� 

belongs and }��� is the sequence of candidates the identifies 0�� in this tree. 

Proof: 

Procedure 8 process a package 0�� only once, so the tree associated to 0�� is unique. 

From this and Corollary 1 follows the present corollary. ∎ 

Lemma 6: amount of votes in a packages belonging to a tree 

The number of votes in package 0�� ≡ (0��, }���), 0� is given by 0� = 0� ∏ �(��L)����L , 

where, ℎ is the length of }��� and �(��L)� is the percentage of  transfer to the tth 

candidate in }��� from the tth-1  candidate in }���, as defined in the structure of the 

network. 

Proof: 

If the length of }��� is 1,  0�� = 0�� and the result is trivial. 

Procedure 8, defines the number of votes of each package 0�� generated by the 

processing of a package 0��, by 0�� = 0�� ∙ ���, where ��� is the percentage of transfer 

from 0�� to 0��. If the present lemma holds for paths of length ℎ − 1, then the number 

of votes in the parent of 0��, 0���L   is given by  0��L = 0� ∏ �(��L)���L��L . 

Using 0� = 0��L ∙ �(��L)� , the result is immediate. ∎ 

Corollary 3: alignment of vote packages trees 

If we take two packages 0�� and 0��  such �� = ��, for any package 0��� belonging to a 

tree of root 0��, identified by the sequence of candidates }�, there is one and only one 

package 0��� belonging to a tree of root 0�� identified by the same sequence. 

Proof: 

The candidates indicated in the packages that are generated in the processing of any 

package 0��, by Procedure 8 only depend on ��, the candidate associated to 0��  and not 

on 0�, the amount of votes in 0�� so the structures of the generated trees are identical 

proving the present corollary. ∎ 

Definition 17: package equivalent to a finite set of packages 

We say that a package 0�� = (�, 0�, UV�) is equivalent to a finite set of packages }� = {0��|0�� = (�, 0�, UV�), 1 ≤ � ≤ a} if and only if ∑ 0� = 0� ��L . 



Definition 18: package equivalent to an infinite set of packages 

We say that a package 0�� = (�, 0�, UV�) is equivalent to an infinite set of packages }� = {0��|0�� = (�, 0�, UV�), 1 ≤ �} if and only if lim →£ ∑ 0� ��L = 0�. 

Definition 19: equivalence of a tree to a forest  

We say that a tree of votes ~0�, of root 0�� is equivalent to a finite or infinite forest ¤0, 

whose kth tree we call ~0� of root 0��, if and only if �� = ��, ∀� and if every package 0��� ≡ (0��, }�) is equivalent to the set }�� = {0��� ≡ (0��, }�), ∀0�� ∈ }�}. 

Lemma 7: automatic equivalence of a tree to a forest 

If a package of votes 0�� is equivalent to a set of finite or infinite packages, }�, the tree ~0�, with root 0�� is equivalent to the forest composed by the trees whose roots are the 

elements, 0��, belonging to }�. 
Proof: 

By Lemma 6, the number of votes in any package  0��� ≡ (0�� , }�), belonging to ~0�  

is given by 0�� = 0� ∏ �(��L)����L  and the number of votes in a package 0��� ≡
(0��, }�), where 0�� is any element of }�, is given by 0�� = 0� ∏ �(��L)����L .  

If }� is finite, ∑ 0� = 0� ��L , if it is infinite lim →£ ∑ 0� ��L = 0�. In any case, with 

algebraic manipulations and using the definitions of package equivalence (Definition 17 

and Definition 18) we conclude that 0��� is equivalent to the set }�� = {0��� ≡(0��, }�), ∀0�� ∈ }�}. 

By the definition of equivalence of trees to forests (Definition 19), the present lemma is 

immediate. ∎ 

Definition 20: package join 

We say that we joined a set a packages, }�,  if we remove all packages belonging to }� 

from v, prevent any other members of }� from being put in v and put in v a package 0�� that is equivalent to }� 

Lemma 8:  insensitivity to package joins 

If we join a set of packages, }�, into a package 0��  when 9~�}�g�} tends to 

infinite, for every �� ∈ � ∪ {��}, the value to which 0� tends in the end of Procedure 8 

and in the end of Procedure 7 does not change. 

Proof: 

By Lemma 5, it suffices to show that the total votes, �0� , in packages associated to any 

candidate ��, processed by Procedure 8,  when 9~�}�g�} tends to infinite, tends to a 

value that does not depend on whether we have performed or not the join of }�. 



By Lemma 7, each  0��� ≡ (0�� , }�) generated as a direct or indirect consequence of 

the addition of 0�� to  v  is equivalent to the set of packages  }�� = {0��� ≡(0��, }�), ∀0�� ∈ }�}  whose elements will be either removed from v or prevented 

from being generated by Procedure 8 and put in v as a consequence of the joining 

operation of }� into 0��. 

Let �@ be line of processing where the joining operation did not take place and �~ be a 

line o processing where it did.  

Let �@� be the value to which tends �0� the total amount of votes in packages 

associated to a candidate �� processed in Procedure 8 when 9~�}�g�} tends to 

infinite in line �@. 

Let �~�, be the value to which tends �0� the total amount of votes in packages 

associated to a candidate �� processed in Procedure 8, when 9~�}�g�} tends to 

infinite in line �~. 

No package can stay forever in v in line �@, since that is a requirement of Definition 

14. Since the join only adds one package to | and does not change the order of the 

other packages, package can stay forever in v in line �~ also. 

Let’s suppose that �@� > �~� and reach a contradiction. 

If in line �@, �0�, tends to �@�, so for some value, ci, of 9~�}�g�}, �0� becomes 

greater than �~�.  

For some value, �i, of 9~�}�g�},  any package 0�� not involved in the join operation 

which is processed till step ci in line �@, will also have been processed in line �~. 

At the same time, in line �~, for a large enough �i, any package 0��� equivalent to 

some set }�� which has had at least one element processed in line �@ till step ci will 

have been processed.  

Since the amount of votes in 0��� is equal to the total amount of votes in all packages 

belonging to }��, The sum of all processed packages associated to candidate ��, �0� , 

would have to be greater than �~� in line �~, what is a contradiction. 

Now let’s suppose that �@� < �~� and also reach a contradiction. 

If in line �~, �0� tends to �~�, then for some value, �i, of 9~�}�g�}, �0� becomes 

larger than �@�. Let’s call the value of  �0� at step �i, �0�¥�. 

Since no package can stay forever in v, for some value ci of 9~�}�g�}, any package 0�� not involved the join operation  which is processed till step �i in line �~, will also 

have been processed in line �@. 



If }� is finite, in line �@, for a large enough ci any package 0��� ∈ }��, where }��  is  

equivalent to some package 0��� which has been processed in line �~ till step �i will 

have been processed. That would make �0� larger than �@� in line �@, what is a 

contradiction. 

If }� is infinite, for a large enough ci, for any  0��� processed in line �~ till step �i, 

any package 0��� ∈ }�� , k < l, where }��  is equivalent to 0���  and l is as large as 

desired will have been processed in line �@. Let’s call the value of �0� at step ci, �0�§�. 

Under this conditions, we can choose  l in order to guarantee that  

0�� − ¨ 2 0����©ª∈«�ª,¬­� ® < ¯, ∀0��� 
for any chosen ¯.  

Consequently, calling }�¥� the set of all 0��� belonging to the tree of root 0�� which 

have been  processed in line �~ till step �i  

2 ¨0�� − 2 0����©ª∈«�ª,¬­� ®∀��°ª∈«�±²
< ¯ ∙ |}�¥�| 

and 

 

2 0��∀��°ª∈«�±²
= �0�¥� 

If we choose ¯ = ³�ª±²�³´ª|«�±²| , we have that  

2 ¨0�� − 2 0����©ª∈«�ª,¬­� ®∀��°ª∈«�±²
< �0�¥� − �@� 

 

2 0��∀��°ª∈«�±²
− 2 2 0����©ª∈«�ª,¬­�∀��°ª∈«�±²

< �0�¥� − �@� 

 

�0�§� ≥ 2 2 0����©ª∈«�ª,¬­�∀��°ª∈«�±²
> �@� 

So, �0� becomes greater than �@� in line �@, what is a contradiction. 

The only remaining possibility is that �@� = �~�, what proves the present lemma for 

Procedure 8. 



Since, except for Procedure 8, there is nothing in the scope of Procedure 7, that can be 

affected by the join operation, the lemma also holds for it. ∎ 

Definition 21: package finite split 

We say that we split a package, 0��, into a set of packages, }�,  if we remove 0�� from v and put in v  all packages belonging to a finite set, }�, which is equivalent to 0��. 

Corollary 4: insensitivity to package finite splits 

If we split a package 0�� in a finite set of packages, }�,  when 9~�}�g�} tends to 

infinite, for every �� ∈ � ∪ {��}, the value to which 0� tends in the end of Procedure 8 

and in the end of Procedure 7 does not change. 

Proof: 

By Lemma 8, we can join  }� into 0�� and the results won’t change.  

This corollary is just the reflex of that and its veracity is valid as long as we can 

guarantee that after the split no package can stay forever in v. Since we are adding a 

finite number of packages to v and are not changing the order of processing of any 

other packages the present corollary follows. ∎ 

Uniqueness of the Result  of the Election and Implementation in a 

Finite Number of Steps 

In this section, we show that the result of the an election where the political network 

system is employed is unique and that such result can be found in a finite number of 

steps. These are the essential requirements to claim that the proposed system is sound 

and computationally possible.   

To build a finite variation of Procedure 7, we will show that 

1. it is possible to build a modified version of the political network that guarantees 

that Procedure 8 ends in a finite number of steps without changing its result and  

2. we can correctly write the procedure !ZXk[XZ��`��ZXo�^kZ�]^() used by 

Procedure 7. 

Procedure 9 removes an edge from the political network going from a candidate ��  to a 

candidate �� (removes �� from 	�). We will prove, in Lemma 9, that its use cannot 

change the results of Procedure 8 or Procedure 7. 

Procedure 9: ���������������������(!", !�)  

3. If 	
� = {��} and 	
� =  {��} 

a. 	
� ← {��} 

b. ��� ← 1 



4. Else 

a. 	
� ← 	
� − {��} + 	
� −  {��} // eliminates �� from the neighbor set of ��, 	
�, but adds all neighbors of  �� to 	
�, excepts for �� itself. 

b. ∀,|�� ∈ 	
� 
i. �
�� ← (�
�� + �
�� ∙ �
��)/(1 − ��� ∙ ���)  // corrects the percentages 

of transfer to each neighbor 

In Procedure 9, if �� wasn’t a neighbor of ��, the old value of �
�� is considered zero. If 

�� wasn’t a neighbor of �� them the old value of �
�� is considered zero. At the same 

time, if �� wasn’t a neighbor of �� ,  ��� is treated as being zero.  

Lemma 9: edge removal 

The application of Procedure 9 by p�]Z��`����X���kZX���u��"!�Y��Y��Y�X\(!4 ), for �� ∈ 8 ∪ 7, removes �� from the neighbor set of �� (removes an edge from �� to ��)  

and the value to which the total amount of votes added to any �� ∈ � ∪ {��} tends 

during the execution of Procedure 7, when MAXSTEPS tends to infinite, does not 

change. 

Proof: 

The edge removal does not affect the processing of any vote package that is not 

associated to �� (not even when they are associated to ��), thus it suffices to show that 

when a package 0�� associated to ��, is processed the use of the modified network 

structure is equivalent to the use of the original structure accompanied by some 

operations of package joining that do not affect the results of interest. It is worth noting 

that a package associated to �� can only be processed if �� ∈ 8 ∪ 7. Since �� ∈ 8 ∪ 7 

by hypothesis, for the present lemma we can assume both �� and �� have been elected 

or eliminated. 

Case 1 

If �� and  �� were the only neighbors of each other, any vote package 0�� associated to ��, when being processed to Procedure 8, would generate a single package associated to ��, containing all its votes and that when processed would generate a single package 

associated ��, closing an infinite cycle and would never transfer votes to any other 

candidates. Thus, regardless of how big MAXSTEPS is, the number of votes in 0�� 
would eventually be discarded. In this context, Procedure 9, immediately discards 0��, 
what proves the present lemma for this particular case. 

Case 2  



In the case where �� ∉ 	
�, Procedure 9 adds to the percentage of votes that would 

already be transferred from �� to each �� ∈ 	
�, the value �
�� ∙ �
��, that is the percentage 

that would normally be transferred from �� to �� (through a package put in v)  and, 

latter, from �� to �� (when the package were processed).  

∀�� , �� ∈ (7 ∪ 8), the processing of the package 0�� = (��, 04�, UV) by Procedure 8 

acting over the original structure would generate a package 0��L = (��, 04� ∙ �
��, UV) and 

would generate a package 0�� = (��, 04� ∙ �
��, UV). When 0�� were processed it would 

generate the package 0��A = (��, 04� ∙ �
�� ∙ �
��, UV). The join of 0��L and 0��A results in 

0�� = (�� , 04�(�
�� + �
�� ∙ �
��), UV) which is identical to the package associated to �� that 

is generated by Procedure 8 when it acts over the structure that was modified by 

Procedure 9. Since by Lemma 8, the join of packages does not affect the results of 

interest, the modifications made by Procedure 9 also do not.  

When ∀�� , �� ∈ (� ∪ {�¶}), the processing of the package 0�� = (��, 04�, UV) by 

Procedure 8 acting over the original structure would immediately add 04� ∙ �
�� votes to �� 

and would generate a package 0�� = (��, 04� ∙ �
��, UV). When 0�� were processed it 

would add 04� ∙ �
�� ∙ �
�� votes to ��.  When Procedure 8 acts over the structure that was 

modified by Procedure 9, 04�(�
�� + �
�� ∙ �
��) votes are added to ��. The total number of 

votes added to �� is the same, thus, the present lemma is  proved for the cases in which 

�� was not a neighbor of ��. 

Case 3 

If �� was a neighbor of ��, using the original structure, any package of votes associated 

to �� when processed by Procedure 8 would generate a single package associated to �� 

and a package associated to each of its neighbors belonging to 7 ∪ 8. Besides that, the 

neighbors of �� belonging to � ∪ {�¶} would receive direct increments to their votes.   

The package associated to ��, when processed, would, in turn, generate a package 

associated to �� and a package associated to each of the other neighbors of �� belonging 

to a 7 ∪ 8. Besides that, the neighbors of �� belonging to � ∪ {�¶} would receive direct 

increments to their votes. 

The alternate processing of packages associated to �� and ��, in the cycle that would be 

formed, would generate, for each neighbor of �� belonging to 7 ∪ 8 that is not ��, an 

infinite set of packages. Besides that, the neighbors of �� belonging to � ∪ {�¶} that are 

not �� would receive infinite direct increments to their votes. For each neighbor of  �� 



belonging to 7 ∪ 8  that is not �� another infinite set of packages would be generated. 

The neighbors of �� belonging to � ∪ {�¶} would also receive an infinite number of 

direct increments to their votes. ∀�� , �� ∈ (7 ∪ 8), �� ∈ 	
� ∪ 	
� the processing of any package 0�� = (��, 04�, UV) by 

Procedure 8 acting over the  structure that was modified by Procedure 9 generates a 

single package  0�� = <�� , 0��, UV=, associated to ��. 

For ∀�� , �� ∈ (� ∪ {�¶}), �� ∈ 	
� ∪ 	
� the processing of any package 0�� = (��, 04�, UV) 

by Procedure 8 acting over the  structure that was modified by Procedure 9 increments 

the amount of votes in ��, 0�,  by the value of 0��. 

It is direct from Procedure 8 that the amount of transferred votes, 0��, does not depend 

on whether �� ∈ (� ∪ {�¶}) or  �� ∈ (7 ∪ 8). In all cases, 0�� = �
6�·�
6©∙�
©�L��©6∙�6© . 

Thus, it suffices to show that 0�� is equal to the sum of the votes transferred to �� 

(either directly or by the generation of packages) in the alternate processing of packages 

associated to �� and �� when Procedure 8 acts over the original structure and 

MAXSTEPS tends to infinite. In the case in which �� ∈ (7 ∪ 8) that means that the use 

of the modified structure has the effect o joining all packages associated to ��, generated 

in the alternating process, into an equivalent package, what by  Lemma 8 does not 

change the results. In the case where �� ∈ � ∪ {�¶}  that means that the sum of the 

increments to 0� is the same whether or not the structure is modified. 

Let ��
  be a neighbor of �� that is not ��. Let �¸̂ be a neighbor of �� that is not ��. Let’s 

observe the alternating process between packages associated to �� and �� and sum the 

votes transferred to ��
  and �¸̂.  
In the first step, 0�� = (��, 04�, UV) is processed. In this step, a number of votes equal to 04� ∙ ��¸̂  are transferred to �¸̂ and it is generated a package associated to �� containing 04� ∙ ��� votes.  

In the second step, a package associated to �� containing 04� ∙ ��� votes is processed. So, ��
  receives 04� ∙ ��� ∙ ���
  votes. It is also generated a package associated to �� containing 04� ∙ ��� ∙ ��� votes. 

In the third step, a number of votes equal to 04� ∙ ��� ∙ ��� ∙ ��¸̂ are transferred to �¸̂ and it 

is generated a package associated to �� containing 04� ∙ ��� ∙ ��� ∙ ���. 



In the forth step, a number of votes equal to 04� ∙ ��� ∙ ��� ∙ ��� ∙ ���
  are transferred to ��
 . 

It is also generated a package associated to �� containing 04� ∙ ��� ∙ ��� ∙ ��� ∙ ��� votes. 

We can observe that the amount of votes transferred to ��
  in each even step is equal to  

the amount transferred in the prior even step multiplied by ��� ∙ ��� what is the result of 

a movement from �� to �� and another in the inverse direction. This way, we have that 

the sum of votes transferred from �� to a ��
  , �0��
 , in the infinite process  is given by 

�0��
 = lim�→£ 2 04� ∙ ��� ∙  ���
 ∙ (��� ∙ ���)��
��� = 04� ∙  ���
 ∙ ���1 − ��� ∙ ��� 

At the same time, we can observe that the amount of votes transferred to �¸̂ in an odd 

step is equal to the amount of votes transferred in the prior odd step multiplied by ��� ∙ ���. Thus, we have that the sum of votes transferred from �� to �¸̂ in the infinite 

process, �0�¸̂  is given by 

�0�¸̂ = lim�→£ 2 04� ∙  ��¸̂ ∙ (��� ∙ ���)� = 0� ∙ ��¸̂1 − ��� ∙ ���
�

���  

Therefore, ∀�� ∈ (	
� ∪ 	
�), the sum of votes transferred to �� in the infinite process, 

�0�  is given by 

�0� = �0�� + �0�� = 0� ∙ �
�� + �
�� ∙ �
��1 − ��� ∙ ��� . 
Since that is that is exactly the amount of votes transferred to �� when Procedure 8 acts 

over the structure that was modified by Procedure 9, the present lemma is proved. ∎ 

 

With Procedure 9, we can remove all candidates that have already been elected or 

eliminated from the neighbor sets of all candidates, that is, remove all edges going to 

non remaining candidates. To do that we use  Procedure 10 and Procedure 11. 

Procedure 10: ���������������������^(!") 

1. ∀��|�� ∈ 	
� 
a. ���������������������(�� , ��) 

 

Lemma 10: removal of all edges going to a non remaining candidate 

After the application of Procedure 10, the candidate ��, is not in the neighbor set of any 

other candidate and the use of the modified structure does not affect the result of 

Procedure 8 when 9~�}�g�} tends to infinite. 

Proof: 



Procedure 9 was  called to eliminate ��  from the neighbor set of each existing 

candidate and, by Lemma 9, did that in a way that does not affect the results of 

Procedure 8. 

It is direct from Procedure 9, that it never creates edges going to �� in this process what 

proves the present lemma. ∎ 

Procedure 11: ���������������������^(!4 ) 

1. ∀��|�� ∈ !4  
a. ���������������������^(��) 

 

Lemma 11: removal of all edges going to a subset of non remaining candidates 

Using Procedure 11 with any !4 ⊂ (8 ∪ 7) as a parameter we obtain a network structure 

where no candidate �� ∈ !4  appears in the neighbor set of any  candidate and that never 

changes the results of Procedure 8 when 9~�}�g�} tends to infinite. 

Proof: 

By Lemma 10, Procedure 10 removes a non remaining candidate, ��,  received as a 

parameter from the neighbor sets of all candidates in a way that does not affect the 

result of Procedure 8. If �� wasn’t in any neighbor set, Procedure 10 does nothing. 

It is direct from Procedure 11,  Procedure 10 and Procedure 9 that it is never created an 

edge going to a candidate that wasn’t already the destiny of some edge. Thus, a 

candidate that has been removed from the neighbor sets of all candidates is never put 

back in any of them.  

Since Procedure 11 calls Procedure 10 for every candidate in �4  a sequence, the structure 

produced by Procedure 11, cannot contain, any edges to a candidate in �4  what proves 

the present lemma. ∎ 

Lemma 12: removal of all edges going to non remaining candidates in an election process 

Using Procedure 11 as p�]Z��`����X���kZX���u��"!�Y��Y��Y�X\(!4 ) we obtain a 

network structure where no non remaining candidate appears in the neighbor set of any  

candidate and the result of Procedure 8, when 9~�}�g�} tends to infinite, does not 

change. 

Proof: 

By Lemma 10, Procedure 10 removes a non remaining candidate, ��,  received as a 

parameter from the neighbor sets of all candidates in a way that does not affect the 

result of Procedure 8. If �� wasn’t in any neighbor set, Procedure 10 does nothing. 



It is direct from Procedure 11,  Procedure 10 and Procedure 9 that it is never created an 

edge going to a candidate that wasn’t already the destiny of some edge. Thus, a 

candidate that has been removed from the neighbor sets of all candidates is never put 

back in any of them. 

It is direct from the implementations of Procedure 3, Procedure 4, Procedure 5 and 

Procedure 6 that all candidates that have been eliminated or elected must have been 

once include in !4  in a call to p�]Z��`����X���kZX���u��"!�Y��Y��Y�X\(!4 )  

This way, the structure produced by Procedure 11, cannot contain, any edges to a non 

remaining candidate what proves the present lemma. ∎ 

 

In Lemma 13, we show that a complete execution of Procedure 7  can be done in a finite 

number of steps as long as we can, in advance, calculate the total amount of votes that 

will be discarded. In Lemma 14 we show how to do that calculation. 

Lemma 13: transfer of votes in a finite number of steps 

If we implement procedure p�]Z��`����X���kZX���u��"!�Y��Y��Y�X\(!4 ) as Procedure 

11 and implement ������_�Zk"Z��(v) without package splits, Procedure 7 will 

always end in a finite number of steps and its results will be the same that we would get 

if p�]Z��`����X���kZX���u��"!�Y��Y��Y�X\(!4 ) was doing nothing with 9~�}�g�} 

tending to infinite. 

Proof: 

By Lemma 12 the structure modified by p�]Z��`����X���kZX���u��"!�Y��Y��Y�X\(!4 ) 

will not contain edges going to non remaining candidates and the results of Procedure 8, 

when 9~�}�g�} tends to infinite won’t change because of the modifications. 

It is direct from Procedure 8 that in the absence of such edges, no vote package is put in v during its execution. 

Before calling Procedure 8, Procedure 7,  adds to v a number of packages that is equal 

to the number of elected candidates possibly added by 1 if a candidate has just been 

eliminated. 

So, as long as ������_�Zk"Z��(v) does not do any divisions of packages (what it has 

no reason to do) Procedure 8 ends in a number of steps that is proportional to the 

number of elected candidates what proves the present lemma. ∎ 

Lemma 14: number of discarded votes and current quota 



Let 01  be the value returned by !ZXk[XZ��`��ZXo�^kZ�]^() and 34  the value calculated in 

Procedure 6 for the quota in the end of Procedure 7. The values of 34  and 01  must be 

given by 

34 = 0
 − ∑ 0
�∀56∈7∪8 ∙ ���<9 − ∑ ���∀56∈7 =  

and 

01 = 2 (0
� − 34 )∀56∈7 ∙ ��� + 2 0
� ∙ ���∀56∈8  

where 9 is the number of available seats, 7 is the set of already elected candidates, 8 is 

the set of already eliminated candidates, 0
  is the current number of valid votes in the 

beginning of Procedure 6 and 0
� is the current number of votes of candidate �� in the 

beginning of Procedure 6. 

Proof: 

In the end of Procedure 7, we must have that 3
 = 34 , where 3
  is the current quota, that 

is, we should have   34 = (0» − 0¼)/9 

where 01  it the total number of votes discarded by Procedure 7 and 0
  in the current 

number of valid votes in the beginning of Procedure 6. 

It is direct from Procedure 6, Procedure 7 and Procedure 8 that if 34  is smaller than that 

value, non transferrable votes will be transferred from elected candidates. If it is larger, 

some transferrable votes will fail to be transferred. 

In the end of Procedure 7, each elected candidate will have exactly q4  votes. Thus, 0
� − 34  is the number of votes in the vote package that is put in v by Procedure 7 for 

any candidate �� ∈ 7.  

In the case of eliminated candidates, Procedure 7 creates packages with all their votes  

(in practice there can be at most one candidate with more than zero votes at this point, 

but that is not relevant). 

By Lemma 13, without changing the results of Procedure 7, we can replace the original 

political network by a network where no edge goes to a non remaining candidate, except 

for the virtual discard candidate. In the modified network, the percentage of transfer 

from any candidate ��  to the discard virtual candidate is ��� and, since remaining 

candidates keep all their votes, there are no indirect vote discards. 

This way, the total number of votes discarded by Procedure 7 is given by  



01 = 2 (0
� − 34 )∀56∈7 ∙ ��� + 2 0
� ∙ ���∀56∈8  

Solving the equation 

9 ∙ 34 = 0
 − 2 (0
� − 34 )∀56∈7 ∙ ��� − 2 0
� ∙ ���∀56∈8  

we get a single solution 

9 ∙ 34 = 0
 − 2 0
�∀56∈7 ∙ ��� + 34 2 ���∀56∈7 − 2 0
� ∙ ���∀56∈8  

34 ¨9 − 2 ���∀56∈7 ® = 0
 − 2 0
�∀56∈7 ∙ ��� − 2 0
� ∙ ���∀56∈8  

34 = 0
 − ∑ 0
�∀56∈7∪8 ∙ ���<9 − ∑ ���∀56∈7 =  

what proves the present lemma. ∎ 

 

In Theorem 1, we show that the final number of elected candidates matches the number 

of available seats. To prepare for that, in Corollary 5, we state some restrictions related 

the value of the current quota.  

Corollary 5: some restrictions to the value of the current quota 

The current quota, 3
 : 

• is  zero from the beginning of the election, if there are no valid votes at all; 

• becomes zero if no remaining candidates have any votes at all, no remaining 

candidates can be reached by vote transfers originated from elected candidates 

and there are less than 9 elected candidates, 

• stays positive if any remaining candidate have any votes at all or can be reached 

by vote transfers originated from elected candidates and there are less than 9 

elected candidates. 

Proof: 

From Lemma 14, the formula to calculate 3
  is  

34 = 0
 − ∑ 0
�∀56∈7∪8 ∙ ���<9 − ∑ ���∀56∈7 =  

The initial quota is calculated before there are any elected or eliminated candidates. It is 

given by 3 = 0/9 and is only zero if the total amount of valid votes is zero. 



If there are less than 9 elected candidates, since each ��� is at most 1 and 0
 =∑ 0
�∀56∈7∪8∪� , 34  can only become zero if, ∀�� ∈ 7, ��� = 1 ∨ 0
� = 0, ∑ 0
�∀56∈� = 0 and    

∑ 0
�∀56∈¾ = 0. We can ignore the last equality because, if remaining candidates have no 

votes, eliminated candidates, even before vote transfers, must have no votes too.  

While there are less than 9 candidates elected, the denominator of the formula, stays 

positive. 

This proves the present corollary. ∎ 

Theorem 1: total number of elected candidates 

If there are at least 9 candidates and at least one candidate receives a vote, at the end of 

the execution of Procedure 2, exactly 9 candidates are elected. 

Proof: 

Candidates are declared elected in a loop, the elections loop, that alternates between 

detecting those that have reached the current quota and operations of vote transfer, that 

cause the current quota to be updated. To declare that a candidate is elected, the current 

quota calculated in the prior step is used. 

While this loop is running the number of eliminated candidates, |8|,  is fixed so is |7| + |�|, the sum of the number of elected and remaining candidates. 

Let’s call the total number of votes in remaining candidates 0¿. 

Let’s consider an iteration of the elections loop such that before it starts |7| < 9 and |7| + |�| > 9 and 0¿ ≠ 0. Let’s call this conditions typical conditions. 

Since  0¿ ≠ 0, by Corollary 5, 3
 ≠ 0. 

As it can be directly verified, before the loop begins, a votes transfer, must have just 

occurred. Thus, by Lemma 2, each already elected candidate has exactly 3
  votes. If the 

set of remaining candidates with at least 3
  votes, �q, were such that  |7| + I�qI > 9, 

the number of votes in 7 ∪ �q would be at least (9 + 1)3
 votes. Since 93
 = 0
 , that 

would be more votes than the current number of valid votes, what is impossible.  

If the set of remaining candidates with at least 3
  votes, �q, is such that  |7| + I�qI =
9, the number of votes in 7 ∪ �q would be at least 93
 votes. Since 93
 = 0
 , that 

would be at least as many votes as the current number of valid votes, that means that all 

candidates in I�qI have exactly 3
  votes and no other remaining candidates have any 

votes at all. After the candidates in �q are declared elected, we have that |7| = 9, |7| + |�| > 9 and 0¿ = 0. This causes the end of the election with exactly 9 elected 



candidates and without further vote transfers. Actually there are no votes to be 

transferred, but there are candidates to be eliminated, what is promptly done . The 

current quota can become undefined, but it is never used again.  

If the set of remaining candidates with at least 3
  votes, �q, is such that  |7| + I�qI <
9, after the candidates in �q are declared elected we have to consider two possibilities: 

there are other remaining candidates with more than zero votes or that can receive 

transfers from elected candidates or there are not. 

If there are no other remaining candidates with more than zero votes or that can receive 

transfers from elected candidates, the remaining seats are filled promptly, using an 

arbitrary criterion, and the election is terminated with exactly 9 candidates elected .  

If there are other remaining candidates with more than zero votes or that can receive 

transfers from elected candidates, by Corollary 5, the vote transfers will end with 3
 ≠0. Thus, the elected candidates will have at most (9 − 1)3
  votes. Since 93
 = 0
 , that 

would be less votes than the current number of valid votes, what means that 0¿ ≠ 0.  

So we have that |7| < 9 and |7| + |�| > 9 and 0¿ ≠ 0, which are exactly the 

conditions of the beginning o the iteration. All the analysis presented is valid  for the 

next iteration of the loop. 

The loop will end in one of the special conditions that terminate the election or when 

there no more remaining candidates with at least as many votes as the current quota. So, 

if the election continues, in the end of the loop, it will still be valid that  |7| < 9 and |7| + |�| > 9 and 0¿ ≠ 0. This implies that |�| ≥ 2.  

After that, one elimination take place and the loop is run again.  

An elimination can never reduce 0¿ to zero, because, if there are any candidates with 

zero votes, one of them must be the eliminated. If no remaining candidates has zero 

votes,0¿could only become zero if � became empty, but in the end of the elections loop |�| ≥ 2, so a single elimination cannot do that. 

So, if after the elimination, |7| + |�| > 9, the loop will run again under the same 

conditions and by the prior analysis  will either terminate the election correctly or end 

again with the same conditions. 

So, eliminations will go on one by one and eventually we will have that |7| + |�| = 9. 

The loop will start with |7| < 9 and |7| + |�| = 9, 0¿ ≠ 0. Let’s call this conditions, 

ending conditions. 

Under this conditions, by Corollary 5,  3
 ≠ 0.  



We needed the condition that 0¿ ≠ 0 to deduce that 3
 ≠ 0. After that we can ignore 

that condition and assume that the loop started simply with |7| < 9 and |7| + |�| = 9 

and 3
 ≠ 0. 

The average number of votes in 7 ∪ � is 
�
À = 3
. Thus there must be at least one 

remaining candidate with at least 3
  votes and that candidate will be declared elected. 

Since |7| + |�| = 9, there is no possibility that more than 9 candidates are elected. 

After that, if there are no other remaining candidates with more than zero votes or that 

can receive transfers from elected candidates, the remaining seats are filled promptly 

and the election is terminated with exactly 9 candidates elected. Otherwise, the we 

have that |7| < 9 and |7| + |�| = 9 and 3
 ≠ 0. This are 

conditions of the beginning that were used in the prior analysis. So the loop goes on, 

always electing at least one candidate, till the termination condition is met and the 

election is ended with 9 candidates elected. 

When the election loop is run for the first time, since 8 = 7 = ∅, |�| ≥ 9 and there is 

at least one candidate the received more than zero votes  we must have that either the 

typical conditions,  |7| < 9 and |7| + |�| = 9, 0¿ ≠ 0 or  

or the ending conditions, |7| < 9 and |7| + |�| = 9, 0¿ ≠ 0, must be met. Both lead 

the election to an end where there are exactly 9 elected candidates. 

This proves the present theorem. ∎ 

 

Corollary 6, is useful to implement the electoral system in a computer that is performing 

finite precision calculations. Typically, the last candidate, may have a number of votes 

that is extremely close to the quota, but, because of rounding errors not exactly the 

quota. With Corollary 6, such candidate may be claimed to be elected without worrying 

about that.   

Corollary 6: election of the last remaining candidates 

If the number of remaining candidates is equal to 9 − |�| then all remaining candidates 

will eventually be elected. 

Proof: 

This corollary is immediate from Theorem 1. ∎ 

 

We will show in Theorem 2, that the result of an election using the political network 

system is unique. 



Theorem 2: uniqueness of the result of a political network election 

The result of an election that follows the definition of the political network electoral 

system is unique. 

Proof: 

The definition of the political network electoral system leads directly to  Procedure 2, 

Procedure 3, Procedure 4 and Procedure 5, which are completely deterministic except 

for the use of  `�ZY^P������^_Y]p�]Z��q[��Z(!4 ), which has some freedom. However, 

Lemma 3 guarantees that any implementation of 

`�ZY^P������^_Y]p�]Z��q[��Z(!4 ) must be equivalent to a variation of Procedure 6.  

Procedure 6, has some freedom through the functions !ZXk[XZ��`��ZXo�^kZ�]^() and 

������_�Zk"Z��(v)  and through the procedure 

p�]Z��`����X���kZX���u��"!�Y��Y��Y�X\(!4 ). The latest, by Definition 12, cannot 

affect the result of the election. The function ������_�Zk"Z��(v), by Lemma 8 and 

Corollary 4, cannot change the result of Procedure 7, that is used to perform vote 

transfers assuming that a pre-calculated value for the current quota will be correct at the 

end of the transferring process. Such value is defined by the return of  

!ZXk[XZ��`��ZXo�^kZ�]^(), which by Lemma 14 is unique. 

Therefore, regardless of implementation variations, the value of Procedure 6 cannot 

change, what proves the present theorem. ∎ 

Theorem 3: election in a finite number of steps 

The result of an election that uses the political network electoral system can be found in 

a finite number of steps. 

Proof: 

The definition of the political network electoral system leads directly to Procedure 2, 

Procedure 4 and Procedure 5, which clearly involve finite numbers of steps, except for 

their use of the procedure `�ZY^P������^_Y]p�]Z��q[��Z(!4 ).  
By Lemma 3 this procedure can be implemented as variation of Procedure 6, which 

clearly involve only finite steps directly, but uses Procedure 7. Procedure 7, in turn, by 

Lemma 13, can be implemented in a way that ends in a finite number of steps. 

Procedure 3, uses the function o���k�8l��!�Y]����Y( ), whose implementation we 

didn’t show. It needs to check if any remaining candidates have any votes and if all 

percentages of transfer from elected candidates to the virtual discard candidate are equal 

to 1. This can clearly be done in finite steps. 

This proves the present theorem. ∎ 



 

Lemma 15 is also useful to implement the electoral system with finite precision 

calculations. It shows that eliminated candidates can never be too close to the current 

quota.  

Lemma 15: minimum vote gap 

If  the number of non eliminated candidates is at least 9 + 1, then, in Procedure 2, 

immediately after the execution of Procedure 3, there is at least one candidate with at 

most 
ÀÀ·L ∙ 3
 votes, where 3
  is the current quota and 9 is the number of seats available. 

Proof: 

Since, by Lemma 2, eliminated candidates have zero votes, the average number of votes 

in non eliminated candidates is  0
? − |8| ≤ 0
9 + 1 = 99 + 1 ∙ 3
. 
Since some candidate must have a number of votes that is at most equal to the average, 

the present theorem is proved. ∎ 

Relation to most open party-list systems 

In this section, we will establish a floor to the number of elected candidates of a 

network solid coalition (Theorem 4) that is immediately applicable to  party party-list 

coalitions (Corollary 10).  

We will also show that the elected members of a the party-list coalition are always those 

who received more individual votes (Theorem 5). 

Definition 22: party-list coalition 

We say that a set of candidates �Á form a party-list coalition if and only if ∀F|�� ∈
�Á, 	� = �Á − {��} and ∀F, ,|�� ∈ �Á, �� ∈ �Á, ��� = 1/|�Á − 1|. 

Definition 23: network solid coalition 

We say that a set of candidates �Á form a network solid coalition if and only if there is 

a path from any candidate in the coalition to any other candidate in the coalition that 

only passes through candidates within the coalition and ∀�� ∈ �Á, 	� ⊂ �Á . 
The definition above is equivalent to saying that the induced subgraph (Diestel 2000) on 

the political network by �Á is strongly connected (Tarjan 1972) and that the coalition 

has no outgoing edges. 

Corollary 7: solidity of party-list coalitions 

Party-list coalitions are network solid coalitions 



Proof: 

In a party-list coalition there is a direct path from any candidate to any other and there 

are no edges going to a candidate outside the coalition.  

This proves the present corollary. ∎ 

Lemma 16: resilience of network solid coalitions 

If a set of candidates �Á form a network solid coalition in the original political network 

then, in any network structure modified by Procedure 11 where �Á ∩ � ≠ ∅, there is a 

path from any candidate in �Á to any candidate in �Á ∩ � that only passes through 

candidates within  �Á and there are no edges going from any candidate inside the 

original coalition to any candidate outside it, except for one edge going from the last 

remaining candidate in the coalition to the virtual discard candidate, ��. 

Proof: 

Since the candidates in �Á form a network solid coalition then there is a path from any 

candidate in �Á to any other candidate in �Á that only passes through candidates within  

�Á. 

We are interested in the fact that there is a path from any candidate in �Á to any 

candidate in �Á ∩ � that only passes through candidates within  �Á, what is a particular 

case of the assertion above. Thus, initially, it is true. 

It is also initially true that  

When a candidate �� stops being a remaining candidate, Procedure 10 is called by 

Procedure 11 and modifies the structure of the network usually removing all incoming 

edges of  �� and adding edges going from �� to ��, ∀��, ��|� ≠ e, �� ∈ 	� ∧ �� ∈  	�, 

what clearly adds no edges going away from the coalition, if there were no edges going 

away from the coalition already.  

In the only special case in which ∃��|	� = {��}  ∧ 	� = {��} Procedure 10 adds an 

edge from �� to  �� , where ��  is the virtual discard candidate.  However, since there is 

a path from �� to any candidate in �Á ∩ � and since there can only be an edge going 

from �� to ��  if  �� is, itself, a remaining candidate, the special case can only happen if 

�Á ∩ � = {�� , ��}. In this case �Á ∩ � would become equal to �� and the present  

lemma’s statement admits an edge going from the last remaining candidate in �Á to �� . 
Latter, when �� ceases to be a remaining candidate, Procedure 11 will add edges from 

other candidates in �Á to �� , but that is also admitted. 



We still have to prove that, after the execution of Procedure 10, there is still a path from 

any candidate in �Á to any candidate in �Á ∩ � that only passes through candidates 

within  �Á.  

We can see that that is true noting that if the old path from a candidate �  to a candidate �� with �  ∈ �Á ∧ �� ∈ �Á ∩ � did not pass through �� it remains unaffected by 

Procedure 10. If it passed through �� then there was a path from �  till some ��| �� ∈ 	� 

only passing through candidates in �Áand there was a path from some ��|�� ∈ 	�  to �� 

only passing through candidates in �Á.  Procedure 10 adds an edge from �� to ��, ∀��, ��|� ≠ e guaranteeing that a path from �  to �� still exists.   

A path from �  to �� itself ceases to exist, but that does not matter since �� stops 

belonging to �. 
This proves the present lemma. ∎ 

Corollary 8: resilience of  votes  in network solid coalitions 

If a set of candidates �Á form a network solid coalition, then all votes received by any 

candidates belonging to �Á remain in candidates belonging to �Á while there is still 

��|�� ∈ �Á ∩ � (there is still a remaining candidate in the coalition). 

Proof: 

By Lemma 16, while �Á ∩ � ≠ ∅, �Á has no outgoing edges except for one edge going 

from the last remaining candidate in the coalition to the virtual discard candidate, ��. 

Since remaining candidates never transfer any votes, no votes originally received by 

candidates belonging to �Á can be transferred to candidates outside �Á (including ��). 

So, these votes can only be transferred to other candidates within �Á. 

This proves the present corollary. ∎ 

Lemma 17: minimum number of votes in network solid coalition candidates 

If  the number of non eliminated candidates in  a network solid coalition is ÃÄ�Å∙À� ÆÄ, then, 

in Procedure 2, immediately after the execution of Procedure 3, where candidates are 

claimed to be elected, each candidate in this coalition have exactly 3
  votes, where 3
  is 

the current quota, 9 is the number of seats available, 0Á is the total number of votes of 

the party and  0 is the total number of valid votes. 

Proof: 

By Corollary 8, all votes originally received by candidates in �Á are always in  

candidates in �Á. So the average number of votes of the candidates in �Á is 



0Á
ÇÄ0Á ∙ 90 ÈÄ ≥ 0Á0Á ∙ 90 = 09 ≥ 0
9 = 3
. 

All candidates with 3
  or more votes are elected in the loop that precedes the call to 

Procedure 4 in Procedure 2.  By Lemma 2, all elected candidates have exactly 3
  votes 

after the vote transfer that happens within that loop. Thus, no candidate in can �Á can 

have more them 3
 . To achieve the calculated average, they all must have exactly 3
 . ∎ 

Theorem 4: minimum number of elected candidates in a network solid coalition 

If a set of candidates �Á, |�Á| ≥ ÃÄ�Å∙À� ÆÄ, form a network solid coalition, a number 

9Á ≥ ÃÄ�Å∙À� ÆÄ of its members are elected, where 9 is the number of seats available, 0Á is 

the total number of votes of the party and  0 is the total number of valid votes. 

Proof: 

By Lemma 17, immediately after the call to Procedure 3, if  the number of non 

eliminated candidates in  a network solid coalition is ÃÄ�Å∙À� ÆÄ, all candidates in  �Á have 

exactly 3
 , what implies directly that they all must have been elected. Since eliminations 

happen one by one and |�Á| ≥ ÃÄ�Å∙À� ÆÄ, at some point, before the number of non 

eliminated candidates of �Á becomes smaller them  ÃÄ�Å∙À� ÆÄ, it must become equal, 

causing the elections of them all. This proves the present theorem. ∎ 

 

In Corollary 9, we show that there is a relatively big gap between the number of votes in 

any candidate in a network solid coalition whose number of non eliminated candidates 

has reached the theoretical minimum and the remaining candidate with the least number 

of votes. This means that rounding errors cannot break the guarantee of the minimum 

number of elected candidates for network solid coalitions. If the candidates that should 

be elected immediately for reaching the current quota happen not to be so because of 

rounding errors, they cannot be eliminated either. They stay as remaining candidates till 

they receive more votes, the current quota is reduced, or Corollary 6 is applied. In any 

case they are eventually elected. 

 

Corollary 9: vote gap for network solid coalitions 

If  the number of non eliminated candidates in  a network solid coalition is ÃÄ�Å∙À� ÆÄ, then, 

in Procedure 2, immediately after the execution of Procedure 3, where candidates are 



claimed to be elected, each candidate in this coalition have at least  (1 − ÀÀ·L)3
 votes 

beyond the number of votes of the remaining candidate with the least number of votes , 

where 3
  is the current quota, 9 is the number of seats available. 

Proof: 

By Lemma 15,, there is at least one remaining candidate with at most  
ÀÀ·L ∙ 3
.  By 

Lemma 17, the number of votes of any candidate in the network solid coalition is 3
 . ∎ 

Corollary 10: minimum number of elected candidates in a party-list coalition 

If a set of candidates, �Á, form a most open party-list coalition, a number 9Á ≥ ÃÄ�Å∙À� ÆÄ 
of its members are elected, where 9 is the number of seats available, 0Á is the total 

number of votes of the party and  0 is the total number of valid votes. 

Proof: 

By Corollary 7, a party-list coalition is a network solid coalition. From Theorem 4, the 

present corollary is immediate. ∎ 

Theorem 5: set of elected candidates in a party-list coalition without incoming edges 

If a set of candidates, �Á, form a party-list coalition, and none of its members receive 

votes transfers from candidates that are not in �Á (�Á has no incoming edges), the 

subset �Á of size 9Á containing all elected candidates of �Á,  contains exactly the 9Á 

candidates that received more individual votes in �Á. 

Proof: 

All candidates that are not elected in the political network system are eliminated when 

they become the candidate with least votes of all remaining candidates. 

When any transfer of votes with origin in a candidate of �Á takes place, the number of 

votes transferred to each remaining candidate of �Á is the same, since in a party-list 

coalition, all percentages of transfer are equal. 

Since no candidates in �Á receives transfers from outside �Á, at any moment in the 

election, the number of votes transferred to any candidate in �Á is equal to a constant, 

C. 

Thus, if �L and �A, are two candidates belonging to �Á, that received respectively  0L 

and 0A individual votes such that 0L > 0A, the values 0
L and 0
A representing their 

current number of votes are such that  0
L =  0L + C > 0A + C =  0
A. 

So �L always has more votes then �A and �L can never be eliminated before  �A. 

This proves the present theorem. ∎ 



Definition 24: most open party-list network structure 

We say that a political network has a most open party-list structure if and only of all 

candidates are in party-list coalitions. 

Corollary 11: elected candidates of a party-list coalition in a most open party-list network structure 

If the political network has a  most open party-list structure the elected candidates of 

any party-list coalition are exactly those who received more individual votes in the 

coalition. 

Proof: 

Every candidate is in a party-list coalition and party-list coalitions have no outgoing 

edges. This implies that no coalitions can have incoming edges either. The application 

of Theorem 5 to each coalition proves the present corollary. ∎ 

Computational complexity of a political network election and speed 

test 

In Theorem 6,  we show that  the computational time complexity (Papadimitriou 2003) 

of a political network election is @(9 ∙ ?A + ?B/C), where ? is the number of 

candidates,  9 is the number of seats available and  C is the number of processors. In 

Theorem 7, we show that its computational space complexity is @(?A). Such 

complexities are not low, but not prohibitive for a modern computer, what proves that 

the proposed systems is feasible in practice.  

Theorem 6: computational time complexity 

The computational complexity of the a political network election is @(9 ∙ ?A + ?B/C), 

where ? is the number of candidates and  C is the number of processors. 

Proof: 

Let’s consider an implementation of Procedure 8 where ������_�Zk"Z��(v) does no 

splits and where p�]Z��`����X���kZX���u��"!�Y��Y��Y�X\(!4 ) is implemented as 

Procedure 11. 

Procedure 8 contains a main loop that removes one element of the structure v in each 

step and since, by Lemma 12, the structure modified by 

p�]Z��`����X���kZX���u��"!�Y��Y��Y�X\(!4 ) does not contain any edges going to non 

remaining candidates, puts no packages back into v.  

Since, Procedure 7, put in  v, at most one element for every elected candidate and one 

element for the most recently eliminated candidate, this loop is executed at most 9 



times, where 9 is the number of available seats (the elected candidates are at most 9 − 1, or the election would be already over).   

Inside the main loop there is a sub loop that is executed once for every neighbor of the 

node removed from v. Every node may have at most  ? neighbors. 

So the computational time complexity of Procedure 7  is @(9 ∙ ?), where ? is the 

number of candidates and  9 is the number of available seats. 

Other than calling  Procedure 7 once, Procedure 6 only executes constant time 

commands, calls to p�]Z��`����X���kZX���u��"!�Y��Y��Y�X\(!4 ) and calls  

!ZXk[XZ��`��ZXo�^kZ�]^(). The latest, by Lemma 14, 

only needs to apply a linear  time formula. Thus, except for 

p�]Z��`����X���kZX���u��"!�Y��Y��Y�X\(!4 ), whose analysis we will do separately , 

Procedure 6 is also @(9 ∙ ?). 

At the same time, Procedure 6, is only called when a candidate is eliminated or when at 

least one candidate is elected. In both cases, at least one candidate is removed from the 

set of remaining candidates. Since there is no return to this set, Procedure 6 can be 

called at most ? times in the whole election process. 

Thus, the computational time complexity of all vote transfers in the full election 

process, is @(9 ∙ ?A).  

Procedure p�]Z��`����X���kZX���u��"!�Y��Y��Y�X\(!4 ), which is implemented as 

Procedure 11, is called once for every call to Procedure 6 and thus, at most, ? times.  

Procedure 11 calls Procedure 10 for every candidate, ��, in the set !4 . Candidates in this 

set are those who have just been elected or eliminated, thus, each candidate, must be is 

this set once and only once in the whole election. This way,  Procedure 10 is called ? 

times in the election. 

Every time Procedure 10 is called, it calls Procedure 9 for every node that has �� as a 

neighbor. They are at most ?, thus Procedure 9 is called at most ?A times. Procedure 9 

includes loops where neighbor sets are scanned and each of them can be of length at 

most ?.  

During the execution of Procedure 9, the neighbor sets of the candidates that had �� as a 

neighbor are updated based on their prior values and on the neighbor set of ��, which is 

fixed. This means that these updates can be run in parallel, without any synchronization 

delays. 



Thus, the time complexity of the p�]Z��`����X���kZX���u��"!�Y��Y��Y�X\(!4 ) for the 

full election process is @(?B/C).  

It can be checked directly that other than vote transfers and updates in the network the 

election involves only less complex operations. The only point that may be unclear is 

the use of  the function o���k�8l��!�Y]����Y( ), whose implementation we didn’t 

show, by Procedure 3. It needs to check if any remaining candidates have any votes and 

if all percentages of transfer from elected candidates to the virtual discard candidate are 

all equal to 1. This can clearly be done, at worst, in linear time. The calls to 

o���k�8l��!�Y]����Y( ) happen only when at least one candidate is elected. So its full 

complexity is @(9 ∙ ?). 

Therefore, the time complexity of the full election algorithm is  @(9 ∙ ?A + ?B/C). ∎ 

Theorem 7: computational space complexity 

The computational space complexity of the a political network election is @(?A). 

Proof: 

It is easy to see that the political network election requires the storage of some data 

whose amount is fixed, like the current quota, some data whose amount is   proportional 

to the number of candidates, like the set of remaining candidates, the set of eliminated 

candidates and the number of current votes for every candidate and some data whose 

amount is proportional to the number of relations among candidates like the sets of 

neighbors and the percentages of transfer for each neighbor. 

Thus, the space complexity of the election is @(�) + @(?) + @(?A) = @(?A). ∎ 

Analysis  of the network structure 

To investigate the political network it is convenient to be able to remove all edges going 

to arbitrary sets candidates as if they had been eliminated or elected and observe the 

relations among the candidates that remain. Procedure 11 removes all edges going to 

eliminated or elected candidates from the network  without changing the result of the 

election. We can apply this procedure to a set of arbitrary candidates, !� and just 

observe the results. This makes sense because in the modified structure no votes could 

go from a candidate �� to a candidate �� passing through any candidate in !�. This way, 

relations  among candidates that may be disguised by the interposition of elements of !� 

will have to show up. 



We will show in Theorem 8, that the resulting network is always the same regardless of 

whether any candidate ��|�� ∈ !� is treated as eliminated or elected. 

Theorem 8: removal of all incoming edges  of arbitrary candidates  

If Procedure 11 is called with any set of candidates, !�, arbitrarily chosen as a 

parameter, the result will be a network structure that is exactly the one we would get if 

the candidates in !� had been elected or eliminated during the execution of Procedure 2, 

regardless of the order of the eliminations and elections and regardless of which 

candidates were elected and which were eliminated. 

Proof: 

It is easy to see that Procedure 11 is not even aware of which candidates were 

eliminated and which were elected, so its behavior cannot be affected by that. 

By Lemma 11, the use of Procedure 11 when any subset of 8 ∪ 7 is passed as a 

parameter never changes the results of Procedure 8. 

Let suppose that Procedure 11 could result in two different structures, �É and �Ê . In 

this case, the use of both structures would have to always lead  Procedure 8 to the same 

results. Procedure 11 applies several modifications the network without ever changing 

the results of Procedure 8, so, indeed, there can be many different structures that can 

lead Procedure 8 always to the same results. We will prove that two different structures 

that could be the final result of Procedure 11 cannot. 

If �É ≠ �Ê There would be two candidates �� and ��  such that ���É ≠ ���Ê, where ���É is 

the percentage of transfer from �� to �� in �É and  ���Ê is the percentage of transfer from 

�� to �� in �Ê. 

Since in the end of the execution of Procedure 11 there are only edges going to 

remaining candidates, then �� would have to be a remaining candidate.  

Suppose that latter, a transfer of votes with !� as the origin takes place and that no other 

transfers take place in the same round, what can happen, for example when !� is 

eliminated. The amount of votes transferred to !Q in the end of Procedure 8 would be 

different in  �_ and �Ë, contradicting Lemma 12. 

There is still the possibility that the structures �É and �Ê differ only in respect to 

outgoing edges of candidates that have already been eliminated, since that would not 

affect  the results of Procedure 8. However,  it is direct from the implementations of  

Procedure 9, Procedure 10 and Procedure 11 that they treat outgoing edges of any 

candidates in the same way. So, if  �É and �Ê cannot differ in respect to the outgoing 



edges of remaining candidates, they cannot differ in respect to outgoing edges of any 

candidates. 

This proves the present theorem. ∎ 

Insensitivity to the order of eliminations and elections 

In Theorem 9 we show that the number of votes in any remaining candidate and the 

number of discarded votes do not depend on the order of elections and eliminations that 

have already taken place in an election process. Before that, we need some lemmas and 

a corollary. 

Lema 18: insensitivity to the postponing of the elimination of a single candidate 

If we sequentially execute an operation of vote transferring through the network, claim 

one arbitrary candidate �� to be eliminated and execute another operation of vote 

transferring, than ∀�� ∈ � ∪ {��} the final number of votes in candidate ��, 04�,   is 

identical to 0��, where 0�� is the final number of votes in candidate �� when first claim �� 

to be eliminated and them execute a single operation of vote transferring. 

Proof: 

By Lemma 13, we can replace the original political network by a network where no 

edges go to a non remaining candidate, except for the virtual discard candidate.  We 

assume that throughout the present proof. 

The first proposed sequence of operations involve transferring votes, eliminating a 

candidate and transferring votes again. We will need to calculate some values 

immediately after the first vote transferring, so that we can use them latter to calculate 

the final quota, 34   and 04�, ∀�� ∈ � ∪ {��}. We will refer to such values by 3� , 0� , 0��  

with  meanings that can easily be deduced by the contexts. 

Using Lemma 14 after the first vote transferring operation we have 

3� = 0
 − ∑ 0
�∀56∈7∪8 ∙ ���<9 − ∑ ���∀56∈7 =  

Also by Lemma 14, the current number of valid votes at this point is given by 

0� = 0
 − 2 (0
� − 3� )∀56∈7 ∙ ��� − 2 0
� ∙ ���∀56∈8  

At the same time, by Lemma 2, after the first vote transfer process, all elected 

candidates have exactly q�  votes and all eliminated candidates have exactly 0 votes. 



Thus, 0
� − 3�  is the number of votes in the vote package put in v by Procedure 7 for any 

candidate �� ∈ 7. In the case of eliminated candidates Procedure 7 creates a package 

with all their votes. Thus, the number of votes in �� after the first vote transferring is 

given by 

0Ì� = 0
� + 2 (0
� − 3� )∀56∈7 ∙ ��� + 2 0
� ∙ ���∀56∈8  

Since no edges go to elected or eliminate candidates, for any candidate ��|�� ∈ 7 ∪ 8, ��� = 0. 

 

After we eliminate ��, the network is adjusted by Procedure 11. For any candidate �� 

we have that 

���� = ��� + ��� ∙ ���1 − ��� ∙ ���  

For the candidates �� that are in 7 ∪ 8, since ��� = 0, 

���� = ��� + ��� ∙ ��� 

Lets now calculate 34 . 
To obtain the current quota after the second transfer, we apply the formula for the 

current quota again but start from the amounts of votes in each candidate after the first 

transfers and remember that  �� has been eliminated. We obtain 

34 = 0� − 0�� ∙ ��� − ∑ 3�∀56∈7 ∙ ����<9 − ∑ ���∀56∈7 =  

34 = <0
 − ∑ (0
� − 3� )∀56∈7 ∙ ��� − ∑ 0
� ∙ ���∀56∈8 = − 0�� ∙ ��� − ∑ 3�∀56∈7 ∙ ����<9 − ∑ ���∀56∈7 =  

 

34 ∙ ¨9 − 2 ���∀56∈7 ® = 

¨0
 − 2 (0
� − 3� )∀56∈7 ∙ ��� − 2 0
� ∙ ���∀56∈8 ® 

− ¨0
� + 2 (0
� − 3� )∀56∈7 ∙ ��� + 2 0
� ∙ ���∀56∈8 ® ∙ ��� 



− 2 3�
∀56∈7 ∙ (��� + ��� ∙ ���) 

 

34 = 0
 − 0
� ∙ ��� − ∑ 0
� ∙ (��� + ��� ∙ ���)∀56∈7∪8<9 − ∑ ���∀56∈7 =  

We have calculated the current quota after the second vote transfer for the case where 

we transfer votes, eliminate a candidate and transfer votes again.  

Now, let’s calculate 3�  the current quota after the vote transfer for the case where we 

first eliminated the candidate and them perform a single vote transfer.  

We start by adjusting the network to reflect the elimination of !Q, what, as we have 

seen, for candidates !" that are in 7 ∪ 8, gives us �� "¶ = �"¶ + �"Q ∙ �Q¶. Then we  

apply the formula of  what yields to 

3�  = 0
 − ∑ 0
�∀56∈7∪8∪G!QÍ ∙ <��� + ��� ∙ ���=<9 − ∑ ���∀56∈7 =  

Since ��� = 0, 

3� = 0
 − 0
� ∙ ��� − ∑ 0
�∀56∈7∪8 ∙ (��� + ��� ∙ ���)<9 − ∑ ���∀56∈7 =  

Thus 3� = 34 . 
We are ready to calculate 04� and 0��,  ∀�� ∈ � ∪ {��}.  Let’s start by 04�. 

After the first transferring of votes we have that 

0�� = 0
� + 2 (0
� − 3� )∀56∈7 ∙ ��� + 2 0
� ∙ ���∀56∈8  

 

After the elimination of ��, we have that 

04� = 0�� + 0�� ∙ ��� + 2 (3� − 34 )∀56∈7 ∙ ���� 

04� = 0
� + 2 (0
� − 3� )∀56∈7 ∙ ��� + 2 0
� ∙ ���∀56∈8 + 

¨0
� + 2 (0
� − 3� )∀56∈7 ∙ ��� + 2 0
� ∙ ���∀56∈8 ® ∙ ��� + 

2 (3� − 34 )∀56∈7 ∙ (��� + ��� ∙ ���) 



04� = 0
�+0
� ∙ ��� + 2 (0
� − 34 )∀56∈7 ∙ (��� + ��� ∙ ���) + 2 0
� ∙ (��� + ��� ∙ ���)∀56∈8  

Now let’s go to 0��. It is given by 

0�� =  0
� + 0
� ∙ ��� + 2 (0
� − 34 )∀56∈7 ∙ ���� + 2 0
� ∙ ����∀56∈8  

 

0�� =  0
� + 0
� ∙ ��� + 2 (0
� − 34 )∀56∈7 ∙ (��� + ��� ∙ ���) + 2 0
� ∙ (��� + ��� ∙ ���)∀56∈8  

Thus 04� = 0��, what proves the present lemma. ∎ 

 

Lema 19: insensitivity to postponing of the election of a single candidate 

If we sequentially execute an operation of vote transferring through the network, claim 

one arbitrary candidate �� to be elected and execute another operation of vote 

transferring, than ∀�� ∈ � ∪ {��} the final number of votes in candidate ��, 04�,   is 

identical to 0��, where 0�� is the final number of votes in candidate �� when we first claim �� to be elected and them execute a single operation of vote transferring. 

Proof: 

By Lemma 13, we can replace the original political network by a network where no 

edges go to a non remaining candidate, except for the virtual discard candidate.  We 

assume that throughout the present proof. 

The first proposed sequence of operations involve transferring votes, claiming a 

candidate to be elected and transferring votes again. We will need to calculate some 

values immediately after the first vote transferring, so that we can use them latter to 

calculate 34   and 04�, ∀�� ∈ � ∪ {��}. We will refer to such values by 3� , 0� , 0��  with  

meanings that can easily be deduced by the contexts. 

Using Lemma 14, after the first vote transferring operation we have 

3� = 0
 − ∑ 0
�∀56∈7∪8 ∙ ���<9 − ∑ ���∀56∈7 =  

Also by Lemma 14, the current number of valid votes at this point is given by 

0� = 0
 − 2 (0
� − 3� )∀56∈7 ∙ ��� − 2 0
� ∙ ���∀56∈8  

At the same time, by Lemma 2, after the first vote transfer process, all elected 

candidates have exactly q�  votes and all eliminated candidates have exactly 0 votes.   



Thus, 0
� − 3�  is the number of votes in the vote package put in v by Procedure 7 for any 

candidate �� ∈ 7. In the case of eliminated candidates Procedure 7 creates a package 

with all their votes. Thus, the number of votes in �� after the first vote transferring is 

given by 

0Ì� = 0
� + 2 (0
� − 3� )∀56∈7 ∙ ��� + 2 0
� ∙ ���∀56∈8  

Since no edges go to elected or eliminate candidates, for any candidate ��|�� ∈ 7 ∪ 8, ��� = 0. 

After we claim that �� has been elected, the network is adjusted by Procedure 11. For 

any candidate �� we have that 

���� = ��� + ��� ∙ ���1 − ��� ∙ ���  

For the candidates �� that are in 7 ∪ 8, since ��� = 0, 

���� = ��� + ��� ∙ ��� 

Lets now calculate 34 . 
To obtain the current quota after the second transfer, we apply the formula for the 

current quota again but start from the amounts of votes in each candidate after the first 

transfers and remember that  �� has been elected. We obtain 

34 = 0� − 0�� ∙ ��� − ∑ 3�∀56∈7 ∙ ����<9 − ��� − ∑ ���∀56∈7 =  

 

34 = <0
 − ∑ (0
� − 3� )∀56∈7 ∙ ��� − ∑ 0
� ∙ ���∀56∈8 = − 0�� ∙ ��� − ∑ 3�∀56∈7 ∙ ����<9 − ��� − ∑ ���∀56∈7 =  

 

34 ∙ ¨9 − ��� − 2 ���∀56∈7 ® = 

¨0
 − 2 (0
� − 3� )∀56∈7 ∙ ��� − 2 0
� ∙ ���∀56∈8 ® 

− ¨0
� + 2 (0
� − 3� )∀56∈7 ∙ ��� + 2 0
� ∙ ���∀56∈8 ® ∙ ��� 



− 2 3�
∀56∈7 ∙ (��� + ��� ∙ ���) 

 

34 = 0
 − 0
� ∙ ��� − ∑ 0
� ∙ (��� + ��� ∙ ���)∀56∈7∪8<9 − ��� − ∑ ���∀56∈7 =  

 

We have calculated the current quota after the second vote transfer for the case where 

we transfer votes, claim that a candidate is elected and transfer votes again.  

Now, let’s calculate 3�  the current quota after the vote transfer for the case where we 

first claim the candidate to be elected and them perform a single vote transfer.  

We start by adjusting the network to reflect the election of !Q, what, as we have seen, 

for candidates !" that are in 7 ∪ 8, gives us �� "¶ = �"¶ + �"Q ∙ �Q¶. Then we  apply the 

formula of , what yields to 

3�  = 0
 − ∑ 0
�∀56∈7∪8∪G!QÍ ∙ <��� + ��� ∙ ���=<9 − ��� − ∑ ���∀56∈7 =  

Since ��� = 0, 

3� = 0
 − 0
� ∙ ��� − ∑ 0
�∀56∈7∪8 ∙ (��� + ��� ∙ ���)<9 − ��� − ∑ ���∀56∈7 =  

Thus 3� = 34 . 
We are ready to calculate 04� and 0��  ∀�� ∈ � ∪ {��}.  Let’s start by 04�. 

After the first transferring of votes we have that 

0�� = 0
� + 2 (0
� − 3� )∀56∈7 ∙ ��� + 2 0
� ∙ ���∀56∈8  

After the election of ��, we have that 

04� = 0�� + (0�� − 34 ) ∙ ��� + 2 (3� − 34 )∀56∈7 ∙ ���� 

04� = 0
� + 2 (0
� − 3� )∀56∈7 ∙ ��� + 2 0
� ∙ ���∀56∈8 + 

¨0
� − 34 + 2 (0
� − 3� )∀56∈7 ∙ ��� + 2 0
� ∙ ���∀56∈8 ® ∙ ��� + 

2 (3� − 34 )∀56∈7 ∙ (��� + ��� ∙ ���) 



04� = 0
� + (0
� − 34 ) ∙ ��� + 2 (0
� − 34 )∀56∈7 ∙ (��� + ��� ∙ ���) + 2 0
� ∙ (��� + ��� ∙ ���)∀56∈8  

Now let’s go to 0��. It is given by 

0�� =  0
� + (0
� − 34 ) ∙ ��� + 2 (0
� − 34 )∀56∈7 ∙ ���� + 2 0
� ∙ ����∀56∈8  

0�� =  0
� + (0
� − 34 ) ∙ ��� + 2 (0
� − 34 )∀56∈7 ∙ (��� + ��� ∙ ���) + 2 0
� ∙ (��� + ��� ∙ ���)∀56∈8  

Thus 04� = 0��, what proves the present lemma. ∎ 

Corollary 12: insensitivity to postponing the elimination or the election of an element of a set of 

candidates to be elected or eliminated 

If we simultaneously claim all candidates in a set 84  to be eliminated and all candidates 

in a set 74  to be elected and perform a vote transfer process, ∀�� ∈ � ∪ {��} the final 

number of votes in candidate ��, 04�,   is identical to 0��, where 0�� is the final number of 

votes in candidate �� when we simultaneously claim all candidates in a set 84 −
G��Í, �� ∈ 84   to be eliminated and all candidates in a set 74  to be elected, perform a vote 

transfers process and latter we claim �� to be eliminated and perform another vote 

transfer and is also identical to 0Î�, where 0Î� is the final number of votes in candidate �� 

when we simultaneously claim all candidates in a set 84  to be eliminated and all 

candidates in a set 74 − {��}, �� ∈ 74  to be elected and perform a vote transfer process and 

latter we claim �� to be elected and perform another vote transfer process . 

Proof: 

Let’s consider the modified structure specified in Lemma 13.  

If we postpone the treatment of ��, the structure of the network will, first, be changed 

considering only the other eliminations and elections. If we treat �� together with all 

others, we can still let the modifications related to it to be the last, since  Procedure 11 

does not require any particular order. Thus we can consider the structure that was 

modified to reflect the other eliminations and elections as a starting point to apply the 

modifications related to �� for both cases. 

In one case, we should transfer the votes of the other candidates while !Q is treated as a 

remaining candidate, modify the structure to reflect the elimination or election of !Q and 

apply another vote transfer process to the network. In the other case, we should modify 

the structure to reflect the elimination or election of !Q and apply a single vote transfer 



process to the network. By Lema 18 and Lema 18 the two ways of proceeding yield the 

same results, proving the present corollary. ∎ 

Theorem 9: general insensitivity to the order election and elimination of candidates 

If (84 , 74 ) is a pair where 84  is a set of candidates to be eliminated and 74  a set of 

candidates to be elected, we can execute the elections and eliminations in any order 

including arbitrary simultaneous operations of elimination and election, execute vote 

transfers process between any two consecutive operations and ∀�� ∈ � ∪ {��} the final 

number of votes in candidate ��, 04�, will always be the same. 

Proof: 

Let’s start form an arbitrary sequence of pairs of length �, 

<(8¶, 7¶), … , (8�, 7�), … , (8"�Ï, 7"�Ï)=, where ∀F, 0 ≤ F < �, (8�, 7�) is such that all 

candidates in 8� are to be eliminated, all candidates in 7� are to be elected and all 

elections and eliminations in (8�, 7�) are to be performed simultaneously and where the 

elections and eliminations specified in  (8�, 7�) are to be performed before the elections 

and eliminations specified in (8�·Ï, 7�·Ï) and vote transfer process are to be executed 

between the handling of any two consecutive pairs. We will show that any other 

sequence of pairs would lead to the same results. 

First, we can apply Corollary 12,  to separate the candidates that were part of a pair (8�, 7�). We can do that choosing any individual candidate, �� ,  of 8� or 7� and 

postponing his or her election or elimination to immediately after (8�, 7�) without 

changing any results.  This way the sequence would become  

x(8¶, 7¶), … , <8� − {��}, 7�=, <{��}, ∅= … , (8"�Ï, 7"�Ï)y  
or  

x(8¶, 7¶), … , <8�, 7� − {��}=, <∅, {��}= … , (8"�Ï, 7"�Ï)y. 

We can keep doing that till we have a sequence of pairs where one set is always empty 

and the other unitary. That is equivalent to a sequence of individual elections and 

eliminations. 

Then, because the second pair in the list contains only one candidate, we can use 

Corollary 12 to join it with the first pair, making their operations simultaneous without 

changing the results.  

Latter we can add the next pair, which still contains only one candidate, to the first pair. 

By Corollary 12, that won’t change the results either. We can keep doing this till we 

have only one pair, specifying that all eliminations and elections are simultaneous. 



This set is identical for any initial sequence, what proves the present theorem. ∎ 

References 

Diestel, Reinhard. Graph theory. Vol. 173. Springer, 2000. 

Papadimitriou, Christos H. Computational complexity. John Wiley and Sons Ltd., 2003. 

Tarjan, Robert. "Depth-first search and linear graph algorithms." SIAM journal on 

computing 1, no. 2 (1972): 146-160. 

 

 


