
Political Network Electoral System
Jorge Jambeiro Filho

jorge.filho@jambeiro.com.br

Abstract

We present the political network electoral system, a new semi-proportional

representation electoral system for members of parliament and councilors that

replaces party-lists by a social network where each candidate chooses

individually which other candidates can benefit from his or her votes. This

allows the full liability of the former candidate for the latter and provides to the

elector intuitive and difficult to disguise information about them. We show that

the flexibility of the network can be restricted by rules created by each party

and that, in an extreme case, the political network system can be reduced to a

most open party-list system. This way, the system can be calibrated to comply

with the preferences of candidates, parties and voters and has a good a chance

of being useful in different contexts. The development of the proposed system

required the creation of algorithms to carry proportional representation from

political elections to social networks and, as a collateral effect, a new method

for selecting sets of key players and simplifying networks emerged.

1. Letter to the reader

This paper goes till page 31. After that, there is only an appendix with mathematical

proofs.

The paper was not peer reviewed so read it with care. It was submitted to five journals

and they declined to review it. The most common reason for that was that the paper was

out of scope. This is a contribution to politics from a computer scientist who is also a

Brazil’s Federal Revenue Fiscal Auditor. My main goal is to put an important fraud

detection tool, which is social network analysis, at the service of the voters and make

them more capable of separating candidates that are lying from those who are not.

Apparently this does not fit well in political science.

To help you to decide if it is worth to read the paper, all rejection letters are copied

bellow. Some editors wrote that they found the paper interesting. This does not mean

they endorse its contents since none of them properly reviewed the paper.

In this version of the paper, a section about finding key players and simplifying social

networks was included. This section was only present in the version that was submitted

to Social Networks and not in the versions sent to the other journals which are more

restricted to political science.

Some corrections were made based on the comments that came from the Journal of

Theoretical Politics and a section explaining how the network can be constructed in

steps was included.

Journal: Administrative Science Quarterly

20-Mar-2017

Dear Dr. Jambeiro:

We have received and read your manuscript #ASQ-17-0098, entitled "Political Network Election

System," which you submitted to the Administrative Science Quarterly. We appreciate your

interest in the Administrative Science Quarterly. In the present instance, however, we feel that it

is best to decline the opportunity to review your paper rather than sending it out to reviewers for

comments and evaluation. At ASQ, we screen all manuscripts before initiating a review to ensure

that each paper conforms to our editorial goals. We think that it is better to truncate the review

process and spare authors lengthy delays when acceptance appears extremely unlikely. As detailed

in our “Invitation to Contributors,” the Administrative Science Quarterly publishes theoretical

and empirical work on organizations that is grounded in the current literature on organizations

and makes a significant addition to the literature. Your paper constructs and solves a

mathematical model of a social network electoral system with properties that exceed, but can

encompass, those of traditional party electoral systems. Although this is an innovative and

rigorous study, the topic does not fall within the editorial scope of ASQ.

Submissions to ASQ should engage the theoretical and empirical literature on organizations and

make significant contributions to it. This includes organizations that are part of the state,

especially service-providing organizations such as health care systems and school systems, as well

as state administrative systems. We could also include studies on political parties and how they

function as organizations, and we do in fact have work on social movements, but our editorial

domain does not include electoral systems and their properties. This delineation is because we see

organizations as composed of people interacting in goal-driven activities, and electoral systems

are designed to aggregate individual goals without direct individual interaction. In some ways

they are the opposite of organizations because in electoral systems, individual goals are prior to

collective goals (at least by design), and aggregation of individual goals happens without

interpersonal influence.

Please do not interpret the decision to decline to review your manuscript as a comment on the

merits of your work. We intend no such evaluation. This decision only reflects our judgment that

your paper’s objectives fall outside of ASQ’s editorial domain. This paper clearly has potential in

other journals closer to its goals. We appreciate your considering ASQ as an outlet for your work.

Best wishes,

Henrich

Dr. Henrich Greve

Editor, Administrative Science Quarterly

henrich.greve@insead.edu

Journal: Political Analysis

02-May-2017

Dear Dr. Jambeiro Filho,

I write you in regards to manuscript # PA-2017-045 entitled "Political Network Election System"

which you submitted to Political Analysis.

The editors have reviewed your manuscript. Based on this evaluation, at this point in time I must

decline it for publication in Political Analysis and close the file on it for further consideration.

While I found your paper interesting, it does not really break novel methodological ground (e.g.,

novel statistical tools). You paper, instead, develops a new voting system. I would suggest you

send it to a journal such as the Journal of Theoretical Politics.

Thank you for considering Political Analysis for the publication of your research. I hope the

outcome of this specific submission will not discourage you from the submission of future

manuscripts.

Sincerely,

Jonathan N Katz

Co-Editor, Political Analysis

jkatz@caltech.edu

Journal: Electoral Studies

13-May-2017

Title: Political Network Election System

Dear Dr. Jambeiro Filho,

Thank you for submitting your manuscript to Electoral Studies. Unfortunately, after reviewing

your paper I feel that it is not suitable for publication in the journal and is unlikely to be

favorably reviewed by the referees. Accordingly, the manuscript is being returned without review.

Thank you for giving us the opportunity to consider your work.

Kind regards,

Professor Clarke

Editor

Electoral Studies

Journal: Social Networks

10-jun-2017

Title: Political Network Electoral System

Dear Dr. Jambeiro Filho,

Thank you for submitting your manuscript to Social Networks. Unfortunately, after reviewing your

paper I feel that it is not suitable for publication in the journal as it falls outside the scope of the

journal. Accordingly, the manuscript is being returned without review.

Thank you for giving us the opportunity to consider your work.

Kind regards,

Professor Everett

Co-Editor

Social Networks

Journal: Journal of Theoretical Politics

19-Sep-2017

Dear Dr. Jambeiro Filho

I write you in regards to manuscript # JTP-2017-0953 entitled "Political Network Electoral

System" which you submitted to the Journal of Theoretical Politics.

Unfortunately, we have been unable to procure any useful reviews on your manuscript, so we

have considered whether it is best to continue to seek reviewers or render a decision on the basis

of our own reading.

While we find your manuscript very interesting, we are sufficiently pessimistic about the

prospects for external review that we are declining it for publication at this stage. First and

foremost, the manuscript is very hard to read due to grammar and syntax issues (for example,

when you say "insensibility," you mean "insensitivity"). Second, based on our reading, many of

the results are not very precisely stated (and accordingly, the proofs are impossible to verify). The

literature on electoral systems is, as you know, vast, and it is not clear how to properly situate this

system in the literature without more specification (for example, considering the process as

simultaneous-move or sequential-move noncooperative game between the candidates or parties) of

how the neighbors would actually be chosen (and, arguably, how voters would respond to them).

I am very sorry that we could not procure a more detailed set of reports on the manuscript, but we

suspect that our difficulty is at least in part due to these issues. We hope this feedback, as

abbreviated as it is, is helpful as you pursue this research further.

Thank you for considering the Journal of Theoretical Politics for the publication of your research.

We hope the outcome of this specific submission will not discourage you from the submission of

future manuscripts.

Sincerely,

John Patty

Coeditor, Journal of Theoretical Politics

jwpatty@uchicago.edu

2. Introduction

We present the political network electoral system, a new semi-proportional

representation electoral system for members of parliament and councilors that replaces

party-lists by a social network called the political network.

Proportional representation party-list systems are voting systems where the number of

elected candidates in each party-list is approximately proportional to the total number of

votes obtained by the party. There are two types of them: the open party-list systems

and the closed party-list systems (Norris 1997).

With closed party-lists, the order of election of individual candidates within each party-

list is supplied by the party itself without any influence from the voters. With open

party-list systems, such influence exists in different degrees. In the Netherlands, for

example, the list is ordered by the party, but individual candidates that receive more

votes than a certain threshold are ensured to get a seat, regardless of the original list

order (Leenknegt and Schyff 2007). In Brazil (Brasil 1965), Finland (Ministry of Justice

of Finland 2016) and Latvia (Hardman and Renwick 2012), the number of preference

votes received by each individual candidate fully determines which candidates are

elected within each party. We refer to these systems by the name of “most open party-

list systems” as they are already referred in the internet (Wikipedia 2016) .

In the political network system, each candidate chooses a set of neighbors who are the

other candidates for which he or she wants his or her votes to be transferred if he or she

is eliminated from the election or has more votes than needed to be elected. He or she

also indicates the percentage of votes that should be passed to each of them. Together,

the choices made by all candidates build the political network.

We will show ahead, that a particular set of connection choices can reduce the political

network system to a most open party-list system, characterizing the former as a

generalization of the latter.

The faces in the neighborhood of a candidate bring more information to the voters than

simple party lists, making it safer for them to vote for the candidate of their preference

if they notice that, in case the candidate looses the election, the vote will be transferred

to a few other reasonably good candidates than if they could only count on the

information that any one among a hundred other candidates of the same party could

benefit from the vote. On the other hand, a candidate that adopts a pleasant discourse

but chooses to transfer votes to suspect candidates is also suspect as illustrated in Figure

1.

Figure 1: view of the neighborhood of candidate 997

In contrast to a candidate’s discourse, that may be forged with impunity, his or her

choices of neighbors have strong practical consequences in the election, what favors

transparency and puts the candidates in a tight spot. They will have to confess their true

relationships or pass votes to whom they don’t want to.

A lot of information about the candidates like positions occupied in the past, amount of

votes received in previous elections, parties to which they belong or belonged, the

lawsuits to which they respond, heritage, heritage recent variation and votes against or

in favor of any project discussed in prior incumbencies become much more remarkable

if observed from the network’s point of view.

In Figure 2, we show that the voters can have a bird's-eye view of the network with

remarks of their own choice. In this view, most candidates are represented by light gray

squares, but candidates who satisfied some positive criterion specified by a voter are

displayed in a darker shade and candidates who satisfied some negative criterion are

displayed in black. With such view, the electors can choose a candidate that is near a

darker shade zone and far from black zones as an starting point to decide for whom they

will vote.

Reasoning about the network using different points of views, as exemplified in Figure 1

and Figure 2, is a simple kind of social network analysis (Scott 2012). This kind of

analysis is currently used to detect frauds both in private (Subelj, Furlan and Bajec

2011) and public sectors (Castro 2016) and, if the underlying structure of a voting

system is a social network, can, very well, help voters to spot deceiving candidates and

highlight interesting one’s. Tools for social network analysis are, nowadays, pretty

common (Wikipedia 2017) and voters don’t really need to use them themselves, the

candidates can do that for them and announce the results. Opponent candidates and

political commentators can also help.

Figure 2 : bird’s-eye view of an illustrative political network with voter highlights

There are no radical barriers among people ideas, but in the party-list systems two

candidates either belong to the same party or do not. There are no degrees of proximity.

In the political network system, the closer two candidates are in the network structure

the more similar they are. Any candidates with ideas in common may transfer part of

their votes to each other. This way, if a candidate that, for example, defends animals

rights is eliminated from the election, the probability that another animal defender is

elected will rise as a compensation.

In the political network system, when candidates are eliminated or have surplus votes,

votes are reused by a process that relies on a network structure that was built by the

candidates themselves. At first, giving electors more detailed control over their votes

like in single transferrable voting systems (Tideman 1995) or cumulative voting systems

(Pildes and Donoghue 1995) may look better. However, benefiting from such enhanced

control requires acquiring more knowledge. Many voters don’t think it is worth to do it

and are, sometimes, described as rationally ignorant (Downs 1957). In practice, with

single transferrable voting systems voters may fail to rank more than a few candidates

and have their votes eventually wasted after they become non transferable (Tideman

1995). Even if they do rank many candidates, it is unlikely that they are well-informed

in respect to the whole list, what can even result in “donkey voting” (Orr 2002) .

Cumulative voting systems put an even heavier burden on the voters.

On the other hand, candidates are usually highly committed to an election and much

more involved with politics. Thus, they can be expected to know much more about each

other than the voters. It is true, that candidates cannot be trusted to defend the interests

of the voters before they defend their own. However, in the political network system,

candidates will be judged by the electors after they choose their neighbors and it will be

dangerous for them to choose badly. It can be easier for the electors to approve or

disprove candidates choices than making the choices themselves.

Voters misperceive where candidates stand on important issues, fail to recall relevant

facts related to prior administrations and badly estimate the support of a candidate

within particular social groups (Bartels 2008). Instead of accurate knowledge about

politics they use information shortcuts to decide their votes. Some authors argue that, in

the end, people vote rationally using such shortcuts (Popkin 1994), while others

disagree (Shenkman 2009). The relations among candidates provided by the political

network can become informative and reliable shortcuts to judge a candidate and help

rationally low-informed electors to vote well.

The idea of allowing candidates to delegate their votes to other candidates in order to

obtain transparency and simplicity for the electors without limiting their choices like

closed party-list systems or single member district voting systems (Birch 2005) and in

order to exploit the fact that candidates know more about each other than the voters is

not entirely new and has lead to the conception of multiple-seat delegative elections

(Ford 2002). However, this electoral system does not possess two essential

mathematical properties of the political network system that will be presented ahead: the

insensitivity to the order of eliminations and elections, that neutralizes an important

source of randomness and unfairness in the election process and the guarantee of the

minimum number of elected candidates for network solid coalitions, that is essential for

a proportional representation system.

It is worth to mention a voting system that has been proposed for communities of users

of electronic social networks (Boldi, et al. 2009). This specialized system does offer a

mechanism to elect multiple representatives and, in principle, was a candidate to serve

as a base for the construction of a political electoral system whose underlying structure

is a social network. However, this system does not lead in a natural way to proportional

representation. To achieve it, its authors suggest to detect the isolated components of the

network or to build components using clustering methods. The components are then

treated as parties or coalitions and traditional methods to obtain proportionality like the

D’Hondt method (Gallagher 1991) are applied. In contrast, the political network system

leads to proportionality naturally and a lower bound to the number of elected candidates

for coalitions is established without the system having to treat isolated components

specially or form clusters at all, indicating that this lower bound emerges from a general

tendency to proportionality.

The system developed for electronic social networks cited above is partially based on

PageRank (Page, et al. 1999), whose foundation is the convergence of an infinite

process called random walk, which is, in its turn, an application of a Markov Chain

(Kemeny and Snell 1976) . PageRank has also been employed to rank members of

social networks (Heidemann, Klier and Probst 2010, Pedroche 2010) and was, itself, a

candidate to be the base of the political network electoral system. However, PageRank

was conceived to rank web pages, not to assign a fixed number of seats to politicians.

Though there are similarities between the two process, there is at least one aspect that is

important for political elections that would be completely ignored by a PageRank

approach: in a proportional representation system, the eliminated candidates can transfer

all their votes, but the elected candidates must retain a certain number of votes to back

their own elections and can only transfer their surplus votes to other candidates. In

single transferrable voting systems, this essential aspect is captured in the concept of an

electoral quota. Having proportionality as a goal, the political network system also

needed to have the notion of a quota inserted in its core and could not be grounded

simply on a random walk process. Thus, we conceived another type of infinite processes

that act over free networks and proved that they achieve proportionality.

3. Definition, basic properties and feasibility

We describe the political network electoral system through the following statements:

• before the election begins, each candidate chooses a set of other candidates as

his or her neighbors and specifies the percentage of votes to be transferred to

each of them in case he or she happens to have any transferable votes (note that

neighborhood relations don’t need to be symmetric);

• if a neighbor set is not empty, the percentages of transfer to each of its elements

sum one;

• any votes in an eliminated candidate, received directly from voters or through

transfers from other candidates are transferable;

• any votes beyond the current quota in an elected candidate, received directly

from voters or through transfers from other candidates are transferable;

• any votes received by a remaining candidate, who is a candidate that has not yet

been elected or eliminated, directly from voters or through transfers from other

candidates are not transferable;

• the current quota is the current number of valid votes divided by the number of

seats in dispute;

• the current number of valid votes is the number of valid votes minus the number

of votes that already had to be discarded by the election procedure;

• a direct vote transfer is the division of a package of transferrable votes belonging

to one candidate among his or her neighbors according to the percentages chosen

by he or she;

• electors vote for a single candidate or for a party if they don’t want to specify a

particular candidate;

• votes for a party are treated as if the parties were virtual candidates who are

eliminated in the beginning of the election and whose neighbors are their

members, all of them associated to the same percentage of transfer;

• the election procedure is as follows:

o eliminate party virtual candidates

o transfer and discard votes

o while there are remaining candidates

� while there are remaining candidates with at least as many votes

as the current quota

• declare such candidates elected;

• if there are no remaining candidates with more than zero

votes and none of them can receive votes from any

elected candidate or there are no remaining candidates

with more than zero votes and all seats are filled, fill the

remaining seats declaring some candidates with zero votes

elected using any arbitrary criterion, eliminate all

remaining candidates, terminate the election and exit

• transfer and discard votes

� if there are remaining candidates

• eliminate the candidate with least votes

• transfer and discard votes

• the procedure to transfer and discard votes is any procedure that, in a finite

number of steps, results in the same number of votes in any candidate as a,

possibly infinite, process that

o never transfer or discard non transferrable votes;

o changes the number of votes in any candidate only through direct vote

transfers or vote discards;

o converges to a state where

� all transferable votes have reached remaining candidates except

for the votes that cannot reach a remaining candidate through any

number of direct vote transfers;

� all transferrable votes that cannot reach a remaining candidate

through any number of direct vote transfers have been discarded.

To visualize a vote transfer process, suppose that, in Figure 3, candidate 1 received

1000 votes from the electors, but latter was eliminated from the election. In this case,

candidate 2 would receive 400 votes, while candidates 3 and 4 would receive 300 votes

each. If division is not exact, fractions are used normally.

Imagine now that candidate 3, who chose candidates 7 and 8 as neighbors with

percentages of 50% for each, received 2000 votes from voters. With the 300 that he or

she received from candidate 1, he or she now has 2300 votes. If he or she is then

eliminated candidates 7 and 8 will receive each one 1150 votes. Note that, of these, 150

votes came actually from candidate 1. So the votes of a candidate can help the neighbors

of his or her neighbors, but they tend to do that with less intensity than they help the

immediate neighbors.

Figure 3: structure for vote transfer around candidate 1

In the political network system, just like in single transferrable voting systems, the

process of definition of the elected candidates involve dividing the sum of all valid

votes by the number of available seats getting what is called the quota.

Candidates who have more votes than this quota are already elected and their surplus

votes are transferred through the network.

In the example in Figure 1, if, rather than having been eliminated, candidate 3 had been

elected and if the quota was of, for example, 1800 votes, candidate 3 would transfer 500

votes to his or her neighbors, instead of 2300. In this case, candidates 7 and 8 would

receive 250 votes each.

After the transfers of all initial surplus votes, some other candidates may reach the quota

and be elected immediately what causes their surplus votes to be transferred, possibly

causing others to be elected too.

If there is no direct or indirect path going from a certain candidate to any remaining

candidates, any votes in this candidate can never reach one of them. This happens, for

example, because a candidate didn’t choose any neighbors or because there is a closed

sub network without any remaining candidates. In this case, the votes are discarded, that

is, they are subtracted from the total number of valid votes and the current quota is

adjusted accordingly, what also may cause other candidates to be elected.

Reductions in the quota when some votes cannot be transferred are also employed in

single transferrable voting systems, for example, when Meek’s method is applied (Hill,

12

3

4

5

6

7

8

9

40%

30%

30%

50%

50%

50%

10%

50%

90%

Wichmann and Woodall 1987). Surplus votes of already elected candidates that result

from the reduction of the quota are transferred through the network normally.

When no more candidates can be elected this way, all remaining candidates are

compared and the one with least votes is eliminated (if there is a tie, some arbitrary

criterion should be used to break it). This candidate has his or her votes transferred to

remaining candidates according to his or her neighbor set. The elimination of the

candidate with least votes and transfer of his or her votes is also borrowed from single

transferable voting systems.

The process continues always declaring those who have reached the quota as elected,

eliminating the candidate with least votes and making the necessary vote transfers and

adjustments in the current quota till all candidates have been either elected or

eliminated.

In each step of the process, every time there are transfers for candidates that are already

elected or eliminated they are transferred again till all the votes have been distributed to

remaining candidates, except if that is impossible.

In the appendix, we show that the number of elected candidates indicated by the

election procedure always match the number of available seats (Theorem 1).

The reader may worry about the fact that the definition of the system does not specify

the exact order of vote transfers and some other implementation details. Indeed, if such

details could affect the election result, further arbitrations would be required and they

would hinder trust in the system. However, in the appendix lies the proof that,

regardless of the order of vote transfers and other details, any implementation that

respects what is written in the present section produces exactly the same set of elected

candidates (Theorem 2).

Small differences in amounts of votes can affect the order in which candidates are

claimed to be elected or eliminated. There can be concerns that this order could have big

consequences to the final results introducing randomness and unfairness in the election.

This could also lead candidates and voters to try to predict the order of elections and

eliminations before, respectively, choosing neighbors and deciding votes, what would

make their behavior more tactical than ideological. However, the order of elections and

eliminations, by itself, has no consequences at all. At any point in the election process,

after all required transfers have occurred, given a set of already eliminated candidates

and a set of already elected candidates the number of votes in any candidate is

guaranteed to be the same regardless of the order in which the elections and

eliminations took place (Theorem 9).

The reader may also be worried about the practical feasibility of the system, since the

presence of cycles in the network can lead to infinite sequences of vote transfers. We

cannot work around this problem simply inserting barriers in the vote transfer process,

like disallowing transfers to non remaining candidates or arbitrating a maximum

number of transfers for each vote. Such barriers would lead to waste of votes and would

break important properties like the insensitivity to the order of eliminations and

elections and the guarantee of the minimum number of elected candidates for network

solid coalitions that will be presented ahead. Fortunately, the result of the infinite

processes of vote transferring can be calculated exactly, in a number of steps that is

finite (Theorem 3) and acceptable for typical numbers of candidates, which are bellow

2000 (Theorem 6). The amount of memory required for that is not a problem also

(Theorem 7). Using a personal computer with 4GB of RAM and an Intel Quad core,

Q9550, we were able to run a simulated election with 2250 candidates in 25 minutes.

We employed a network involving connections among all candidates what is the worst

case, both for memory storage and execution time.

The calculation of the results of the infinite process is complex enough to require a

computer, but with the use of an open source program, after the raw number of votes of

each candidate is collect and publicized the algorithm to determine the elected

candidates can be run at home, eliminating any suspicions that could be raised over

closed systems.

The vote transfer process involves fractions, therefore we should worry about floating

point rounding errors. For a small number of candidates, like, for example, 200, we can

run the election process using infinite precision numbers and eliminate the problem. For

elections with a larger number of candidates, finite precision numbers may need to be

employed and there is the possibility that, in the moment of an elimination, the number

of votes in the two candidates with least votes are identical till the last significant digit

considered, but differ in the next digit. If this happens, a rounding error may cause the

eliminated candidate not to be the most adequate. This condition is extremely unlikely

since sixteen significant digits are typically used in computer systems and many more

digits can be employed if desired. Moreover, if the two candidates are so close in their

number of votes, none of them is really better from the point of view of the constituency

and we can disregard this lack of precision and pick any of them.

In the appendix, we prove that rounding errors cannot break important properties of the

system like the total number of elected candidates (Corollary 6) and the minimum

number of elected candidates in a network solid coalition that we will discuss in the

next section (Corollary 9).

To help the analysis of the network, also in the appendix, we show that it is possible to

generate views where some candidates are removed from the role of middle men in any

vote transfers (Theorem 8), making clear the relations among other candidates. A view

that shows the relationships between any candidate and all incumbent candidates, for

example, would eliminate inexpressive candidates and could be quite insightful.

4. Steps in the formation of a political network

To choose their neighbors the candidates will want to know who will be the neighbors

of such neighbors. To avoid misunderstandings or that one candidate can cheat on the

others, we propose that the neighborhood definitions are made in steps.

Bellow, we present an example sequence of steps that could be used:

1. definition of who will be the candidates;

2. first free choice of neighbors;

3. second free choice of neighbors: in this step it is already possible to consider

the neighbors of the neighbors;

4. first neighborhood adjustment: in this step it is not possible to add neighbors,

just to eliminate them or to change percentages of transfer;

5. second neighborhood adjustment: in this step percentages can only be

changed in 50% of their original values;

6. third neighborhood adjustment: in this step percentages can only be changed

in 25% of their original values;

7. forth neighborhood adjustment: in this step percentages can only be changed

in 10% of their original values.

We don’t think that the details of the sequence presented above are important as long as

the network is formed gradually and each candidate has the opportunity to react to the

choices of the others.

5. Relation to most open party-list systems

It is convenient to notice that the political network can be viewed as a generalization of

a most open party-list system, that is, there is a particular political network structure that

presents the same key properties as a system of this type. We call this particular

structure, the party-list network structure.

The party-list political network structure is a structure where each party corresponds to

a party-list coalition containing all its candidates. A party-list coalition is a subnetwork

where all candidates of the corresponding party are the only neighbors of each other and

the percentages of transfer are all identical. In Figure 4, we show an example of such

structure. For simplicity we don’t indicate percentages of transfer.

Figure 4: political network restricted to party-list coalitions

The main property of proportional representation party-list systems is that the number

of elected candidates in each party-list is proportional to the sum of the number of votes

obtained by the party as a whole. The distinguishing property of most open party-list

systems is that the elected candidates of any party are those that received more votes

individually.

In general, party-list systems cannot guarantee perfect proportionality and they vary in

how they approach such goal (Gallagher 1991). The party-list network structure does

not mimic any established party-list system. Instead it guarantees that:

1. the number of elected candidates of each party is at least equal to the floor of

��∙�� , where �� is the number of votes obtained by the party, � is the total

number of valid votes and � is the number of seats available, as long as the

8

9

10

11

12

13

14

15

16

17

18

1
2

3

4
5

6

7

party has enough candidates for that (see appendix, Theorem 4 and Corollary

10);

2. the elected candidates of each party are exactly those who received more votes

individually (see appendix, Theorem 5).

It is worth asserting that the cited theorems also show that if all members of a party, �,

form a party-list coalition completely isolated from the rest of the network while

candidates of other parties do not, the party � can still count on the two guarantees

above.

Guarantee 1, the guarantee of proportionality or guarantee of the minimum number of

elected candidates throws away the fractional part of the party’s vote share and is, thus,

imperfect. However it is the same guarantee that exists for solid coalitions in single

transferable voting systems (Dummett 1984) and that has been pointed out to be the

justification to describe single transferable voting systems as proportional systems

(Tideman 1995).

The political network system can, thus, be used as a proportional representation

electoral system. However, if, for example, no candidate chooses any neighbors at all,

there will be no proportionally and the winning candidates will simply be the most

voted one’s. Single transferrable voting systems also can be used in proportional or non-

proportional ways and are called semi-proportional (Norris 1997). Therefore we also

say that the political network system is a semi-proportional representation system.

Figure 5: party-list structure with party virtual candidates

8

9

10

11

12

13

14

15

1617

18

1

2

3

4

5

6

7

Circle

Party
Square

Party

Octagon

Party

Parties are treated as virtual candidates that can be voted, but not elected. The party

virtual candidates’ neighbors are simply their members and the percentages of transfer

to them are all identical. These virtual candidates are eliminated in the beginning of the

election, what causes their votes to be divided among the neighbors. This allows our

generic algorithm for vote transferring to handle non preferential votes unchanged and

also simplifies the party-list structure, like in Figure 5.

The party-list structure mimics most open party-list systems, however, once the political

network system has been adopted, the network structures may evolve in ways that will

depend on the candidates, on the parties and on the voters. Candidates can potentially

choose their neighbors individually, but each party can create its own rules restricting

what their members can do. Electors, of course, can consider the choices made by

parties and candidates before deciding their votes.

At least, a candidate could avoid transferring votes to party colleagues that were

involved in any scandals. They could also easily point out which members of their own

parties they really trust, like in Figure 6.

Figure 6: political network with free connections within parties

Note that, the party represented by octagons chose not to use the extra freedom offered

by the political network and formed a party-list coalition. As stated, this party still

counts on guarantees 1 and 2 of party-list structures.

The candidates of the party represented by circles do not form a party-list coalition, but

they form what we call a network solid coalition. In a network solid coalition, votes can

go indirectly from any candidate to any other candidate in the coalition and no votes can

8

9

10

11

1213

1

2

3

4

5

6

7

14

15

16

17

18

go to candidates outside it. The guarantee of the minimum number of elected candidates

holds for network solid coalitions, what is very much like what happens with solid

coalitions in single transferable voting systems. On the other hand, because the circle

party members are now expressing preferences in respect to other members, the exact

candidates that will be elected are not anymore guaranteed to be the ones that received

more votes individually.

If they want, parties may only allow its members to define a small part of their

percentages of transfer to specific members. A percentage of, let’s say, 90% could be

enforced to go to the party (through a party virtual candidate) and thus be evenly shared

by all other members. Even with reduced power, individual candidates choices could

still bring useful information to the voters.

On the other hand, parties may do the opposite and allow members to freely decide how

they will transfer almost 100% of their votes, but still force a non-zero percentage of

votes, doesn’t matter how small, to go to the virtual party candidate. In this case, the

party will still form a network solid coalition and count on the guarantee of the

minimum number of elected candidates.

Latter, some parties may colligate with other parties as seen in Figure 7.

Figure 7: political network with free connections within some parties

If they prefer, parties can make weaker colligations, like in Figure 8. The connection

between the square party and the circle party, can involve a very low percentage of

transfer, in such way that almost 100% of the votes of each party would remain within it

8

9

10

11

12

13
1

2

34

5

6

7

14

15

16

17

18

except if it had no more remaining candidates. In this case votes would be automatically

inherited by the other party. Thus, a party could express preferences for other parties

without really mixing with it.

If a political network system replaces a most open party-list system, it is either possible

that all parties merge into a fully flexible political network or that, basically, nothing

happens and the network stays still with a party-list network structure. However, the

network may also evolve to semi flexible structures where different parties form

coalitions with different characteristics. What will actually happen, depends on the

actions of parties and candidates which, in turn, will be submitted to the surveillance of

the voters.

Figure 8:limited party colligations

6. Vote transfer processes

The formal proof that there are vote transfer processes satisfying the definition of the

political network system and that they all converge to the same result is left to the

appendix. In this section we present only key ideas.

Cycles in the network generate an infinite sequence of vote transfers. While the votes

circulate, some of them reach remaining candidates where they stop, but some reach

non remaining candidates from which there is no path to any remaining candidates and

they are, eventually, discarded. Vote discards push the quota down, creating a surplus of

votes in all elected candidates and possibly causing more vote discards. While the

number of votes in all elected candidates is not equal to the current quota, the process

cannot stop. Moreover, we avoided the introduction of details in the definition of the

system and the precise moment of any transfers or discards is free to vary. Besides that,

8

9

10

11

12

13

14

15

1617

18

1

2

3

4

5 6
7

Circle

Party

Square

Party

Octagon

Party

nothing in the definition prevents vote packages from being split into smaller packages

and it is optional to join packages that came from different paths, but currently belong

to the same candidate and transfer them together from this point on or not to do so.

Thus, vote transfer processes are not so regular and we could not prove that they all

converge to the same state of equilibrium simply calculating limiting properties of a

Markov chain, like eigenvectors or absorbing probabilities.

The reason why we allowed such a degree of freedom in the vote transfer processes is

that if we had adopted any particular policy for the vote transfer sequence, we would

have to defend that it was the best from a political point of view, what would be

impossible. A better alternative was to face the complications derived from the granted

freedom and prove that any processes that satisfy the minimum requirements for the

vote transfer process in the definition of the political network system converge to the

same state of equilibrium.

If all non remaining candidates only had remaining candidates as neighbors, there

would be no infinite vote circulation. Votes would be transferred once and stop. With

this simpler structure we would be able to algebraically correlate the quota in the end of

the process to the number of discarded votes and calculate them both solving equations.

Our goal is, thus, to remove from the network all edges going to non remaining

candidates, without modifying the result of the vote transfer process.

Once we know how to remove one edge without changing the result of interest, it

becomes easy to remove them all. Procedure 9 of the appendix does this job, removing

an edge going from a candidate �� to a candidate ��, that is, it removes �� from the

neighbor set of ��, where �� is a non remaining candidate. The candidate �� can be any

candidate, but since his or her outgoing edges would only be used after he or she has

ceased to be a remaining candidate, ��, can be treated as if he or she was a non

remaining candidate too and Procedure 9 acts accordingly.

We show a copy of this procedure bellow, where 	
� is the set of current neighbors of a

candidate �� and �
�� is the current percentage of votes that go to a candidate �� if a

direct vote transfer is originated in a node ��. If �� is not a neighbor of ��, �
�� is

considered to be zero.

The virtual discard candidate ��, was created with the role of receiving the votes that

should be discarded. Before starting the election process, all candidates without any

neighbors, whose transferrable votes, therefore, would always be discarded, have ��

inserted in their neighbor set with a percentage of transfer equal to one. Procedure 9

counts on that.

If �� and �� were the only neighbors of each other, any votes going from�� to �� would

circulate forever. They cannot reach a remaining candidate and can be discarded

immediately. Making the neighbor set of �� equal to {��}, achieves exactly that.

Otherwise, votes that would go from �� to �� would latter go to the neighbors of ��,

who, after the edge removal, must receive the votes directly from ��. Thus, �� is

replaced in the neighbor set of �� by his or her neighbors.

Procedure 9: ���������������������(!", !�)

1. If 	
� = {��} and 	
� = {��}

a. 	
� ← {��}

b. ��� ← 1

2. Else

a. 	
� ← 	
� − {��} + 	
� − {��} // eliminates �� from the neighbor set of ��, 	
�, but adds all neighbors of �� to 	
�, excepts for �� itself.

b. ∀,|�� ∈ 	
�
i. �
�� ← (�
�� + �
�� ∙ �
��)/(1 − ��� ∙ ���) // corrects the percentages

of transfer to each neighbor

The percentages of transfer must, of course, be adjusted. If �� is not a neighbor of ��, it

is easy to see that for any ��, �
�� ← (�
�� + �
�� ∙ �
��) does the job. The percentage to go

from �� to �� is just incremented by the amount of votes that would go from �� to ��

and then from �� to ��.

If �� is a neighbor of ��, we can focus on the votes going back and forth between �� and �� and observe that, while this happens, some votes keep going to their other neighbors.

The percentage of the first transfer from �� to a neighbor �� is �
�� and in every bounce

the amount of votes that go from �� to ��, is smaller than in the previous bounce. It is

not difficult to see that the rate of the decrease is given by ��� ∙ ��� . The percentage of

the first transfer from �� to �� is �
�� ∙ �
�� and in every bounce, the amount of votes that

go from �� to ��, is also decreased at a rate given by ��� ∙ ��� . So the total amount of

votes that go to �� is the sum of two geometric series. Algebraic manipulations lead to

the formula �
�� ← (�
�� + �
�� ∙ �
��)/(1 − ��� ∙ ���).

Of course, the sequence of back and forth transfers between �� and �� would not occur

with a clear separation from all other transfers and discards. Instead, it would be

obfuscated by intercalated transfers between other candidates, by possible vote package

splits and mainly by joins with other vote packages that could reach candidates �� and ��. In the appendix, we handle this details and in Lemma 9 we formally prove that the

use of Procedure 9, indeed, cannot change the result of the vote transfer process.

Note that the edge removal process does not differentiate elected from eliminated

candidates. They are both just intermediate nodes, while the remaining candidates are

the ultimate targets of all the flow in the network. We can say that the network structure

modified by Procedure 9 is equivalent to the original structure in respect to the flow of

votes toward the remaining candidates.

Once we have removed all edges going from non remaining candidates to other non

remaining candidates, all transfers become direct to remaining candidates and all vote

discards become represented by a transfer to ��. Thus, we can write:

01 = 2 (0
� − 34)∀56∈7 ∙ ��� + 2 0
� ∙ ���∀56∈8 ,
01 = 0
 − 9 ∙ 34 ,

where 01 is the number of votes that will be discarded in the vote transfer process, 0
� is

the number of votes in candidate �� before the vote transfer process and ��� is the

percentage of transfer from �� to ��, which represents the percentage of transferrable

votes of �� that should be discarded. At the same time, 7 is the set of all elected

candidates and 8 is the set of all eliminated candidates. 0
 is the number of valid votes

before the vote transfer process, 9 is the number of seats in the dispute and 34 is the

current quota after the vote transfer process.

The equation system is linear and has only one solution, that is given by

34 = 0
 − ∑ 0
�∀56∈7∪8 ∙ ���<9 − ∑ ���∀56∈7 = .
This way, we can obtain the same result that would be achieved by the infinite process

in a finite and deterministic way. Since the obtained result does not depend on details

about the original infinite vote transfer process, like the order of transfers and discards

or the occurrence of joins and split of vote packages, that proves that any suitable

infinite vote transfer process converges to the same state of equilibrium.

In practice, we don’t need a full edge removal process for each vote transfer process.

We only need to remove all edges going to candidates that have just been elected or

eliminated and proceed using the modified structure from this point on.

Having only direct transfers to handle and counting on a formula to update the current

quota, the proofs of the properties of the political network system like the insensitivity

to the order of elections and eliminations and the minimum number of elected

candidates for network solid coalitions become much easier, but are still laborious and

are left to the appendix.

7. Selection of key players and social network simplification

In the political network electoral system, ? candidates form a social network and the

system picks 9 of them to fill available seats in some political house. The 9 candidates

are chosen in order to be a proportional representation of the constituency that voted for

them. Other electoral systems also target proportional representation, what recognizes it

as an important goal, but they work over much more rigid structures like lists, not

arbitrary graphs. So, the political network electoral system extends proportional

representation to social networks.

The key players of a social network are the nodes that are considered “important” with

regard to some criteria (Ortiz-Arroyo 2010). If we consider proportional representation

to be this criteria, we will get very close to the problem that is solved by the political

network electoral system. We only need a few adjustments to “elect“ key players that

offer a proportional representation of the network.

Let’s consider every node in a social network to be a candidate. If there are measures of

the strengths of the connections between nodes, as long as all outgoing edges of each

node are normalized to sum one, they can be used to define the percentages of vote

transfer. Otherwise, uniform percentages of transfer may be adopted.

If there are any weights associated to the network nodes, they should be used as the

initial number of votes for each candidate. Otherwise, the simplest alternative is just to

give one vote to each node. In this case, because every node starts exactly with the same

number of votes, it is important use some centrality measure as a tie breaker.

If we want, we may not consider all nodes of the network to be candidates, but only

those that satisfy some specified restrictions. In this case, we should eliminate all other

nodes from the election in the way we usually eliminate virtual party candidates.

Let’s compare this method of selecting key players to alternative strategies with an

example. To make it simple, suppose that the network has 4 completely isolated

components. The first has 60 nodes, being 3 of them connected to every other node in

the component and all others connected only to this 3 central nodes. The second has 40

nodes, one them connected to every other node in the component and the others

connected only to the central node. The third and forth components have 25 nodes each

and also follow the pattern of having one central node connected to every other node

and the others connected only to the central node. Let’s suppose that we can afford only

3 key players.

Any selection method that is based on centrality measures (Freeman 1978) and that does

not worry about redundancy will tend to either pick the 3 nodes of the big component or

none of them. Since these 3 nodes are structurally identical, they will draw in any

centrality measure. If one goes to the top of the rank, the others will go too. If one goes

to the bottom, so do the others. Clearly, neither of these two alternatives is satisfying.

Borgatti (2006) recognized that simply filling the set of key players with the most

central individuals does not suffice and articulated two different goals for the set of key

players considered as a whole. The first, called KPP-Pos is related to optimally

diffusing something through the network using the key players as seeds, while the

second, called KPP-Neg, is related to maximizing the fragmentation the network with

the removal of the key players. None of these goals is equivalent to finding a

proportional representation of the network, but the first is somewhat closer and it is the

only one we will consider here.

The algorithm proposed by Borgatti to solve KPP-Pos, searches for the set of key

players, 7, that maximizes the sum of the inverses of the distances from 7 to each node

outside it. The distance from 7 to any node outside it is considered to be the minimum

distance from any member of 7 to the node.

For such an algorithm, picking a second central node from the big component in our

example problem accomplishes nothing and, so, it chooses just one of them. The set of

3 key players is completed with one center node from the medium-sized component and

one center node from any of the small ones.

Ortiz-Arroyo (2010) tackled KPP-Pos using a different strategy, which was to pick as

key players the nodes whose individual removals would cause the greatest reduction in

the connectivity entropy of the network as a whole. As shown in the paper, connectivity

entropy does account for the existence of redundant nodes in the network. However,

before picking a particular node as a key player, the proposed algorithm never considers

if the redundant nodes had themselves been picked or not. As a consequence, each of

the 3 central nodes of the biggest component in our example problem receives a low

score for being redundant with the others and the component ends up without any key

players at all.

Let’s check what happens in our example when the political network electoral system is

used to select the key players. The quota starts at 150/3=50 votes. Nobody has votes

enough to be elected yet and the system proceeds eliminating the peripheral nodes of all

components. After only the central nodes remain, no votes have been discarded, the

central nodes of the biggest component have 20 votes each, the central node of the

smallest components have 25 votes each and the central node of the medium-sized

component has 40 votes. One of the central nodes of the big component is eliminated,

what causes the other two to inherit its votes. With 30 votes each, they remain in the

dispute while the central nodes of the smallest components are eliminated. With the

vote discards that occur as a consequence of the elimination of the last nodes of the

smallest components, the quota is reduced to 100/3 votes and the central node of the

medium-sized component is elected. The surplus votes of the just elected candidate are

discarded and the quota is reduced to 30 votes, causing the two remaining nodes to be

elected.

In our example, Borgatti’s solution, avoids redundancy in the set of key players, picking

at most one central node from each component. If the biggest component in the example

had 1000 nodes instead of 60, nothing would change.

The political network electoral system chooses 2 nodes from the big component, 1 from

the medium-sized component and none from the smallest ones. If the big component

had 1000 nodes, all of its 3 central nodes would have been picked. Under this criterion,

some redundancy is accepted to represent better a big number of nodes or having more

influence over them. The idea here is that one node cannot really play the role of three

even if it has all required connections. That may or may not be true depending on the

goal.

There are few methods for selecting sets of key players in social networks that go

beyond centrality measures and the political network electoral system gives rise to a

new one. We have not deeply investigated for which applications this method would be

good, but we list two contexts where it could be used to, at least, provide some insight.

In the political network election process, a candidate transfers votes to others when he

or she is eliminated or when he or she is already elected and has a surplus of votes. In

disputes for relevant positions within an organization, potential contenders that don’t

believe to be strong enough to win, may withdraw and support someone else. At the

same time, someone who has easily guaranteed his or her space may, very well, help a

comrade to get a seat at the table too, showing that informal disputes somewhat

resemble proportional representation elections. Since organizations can be modeled as

social networks, the political network election system can be used to investigate the

balance of power within them and find unofficial or future leaders. Of course, what is

going to be used to define the strengths of the relations among people and what will

count as the initial number of votes for each of them is domain specific and will be

decisive for the relevance of any conclusions.

Now suppose that we are analyzing an economy. We could use the sizes of the

companies as votes and commercial or similarity relations as edges to start a political

network election. The election would distribute the whole economy evenly among key

players (each of them would stand for a share that would be exactly equal to the value

of final quota), what can provide an interesting view. Some of this key players would be

there just for their own size. Others would be representing sets of related small

companies, whose weights would have been transferred to their representatives. Some

other players, would have been selected for having received the surplus weight of some

very big companies.

We can obtain some extra enlightenment simplifying a network using key players. Such

players could have been selected by a network election process, by any other automatic

method or even having been picked manually. To make the simplification, we can look

at the key players as the ultimate targets of all the flow in the network, what, in an

election process, is the role of the remaining candidates. We can then eliminate all edges

going to non key players using Procedure 9 and obtain a structure that is equivalent to

the original one in respect to the flow toward the key players. Only edges going to key

players would remain in the simplified network, but their strengths would reflect all

removed ones. The indirect relations among key players would become explicit. The

indirect relations between any individual non key player and any key player, would

become explicit too. The modified structure would offer a simplified way to understand

the role of any node in the network based on how it relates to the key players.

The time complexity of the election algorithm (see appendix, Theorem 6) is @(9 ∙?A + ?B/C), where ? is the number of candidates, C is the number of processors and 9 is the number of seats available (or the number of key players). This is cubic on the

number of candidates (or number of nodes) and too slow for big social networks. Thus,

an approximation may be necessary. In the ?B/C term, a quadratic factor is due to the

number of possible neighbors of each candidate, that can be as big as the whole

network. In the 9 ∙ ?A term, a linear factor is due to the same thing. If we accept to

drop the weakest links, we can limit the number of neighbors of any candidate to a

constant D. In this case, the complexity of the algorithm becomes @(9 ∙ ? ∙ D + ? ∙DA/C), what is linear in the number of nodes and thus much more manageable.

8. Conclusion

We presented a new electoral system where party-lists are replaced by a fully flexible

social network as a vote transfer mechanism. This system makes relationships among

candidates explicit and thus allows their full liability for those who can benefit from

their votes and provides to the electors intuitive and difficult to disguise information

about them. We are not aware of any electoral system that induces a greater degree of

transparency.

This system, neither increases the complexity of the act of voting like single

transferrable voting systems, nor restrict voters options like closed party-list systems or

single member district voting systems, allowing them to choose from possibly large

ranges of candidates.

It is also relevant that the political network system can mirror the key properties of a

most open party-list system through a particular set of neighbor choices, which can be

freely made by the candidates or imposed by the parties, what reserves to the latter a

more important role than in single transferrable voting systems. Moreover, there is a

smooth path from this restricted network to a fully flexible one and it is even possible

that semi flexible networks turn out to be the best structures for several electoral

systems. Such semi flexible networks may reflect competing party policies that can

evolve under the pressure of voters and that can benefit from the convenient guarantee

of the minimum number of elected candidates for network solid coalitions.

The insensitivity of the number of current votes in any candidate to the order of prior

eliminations and elections during the whole election process is also a pleasant

mathematical property that prevents the introduction of randomness and unfairness in

the election and eliminates, what would otherwise be, an important trigger for tactical

voting. This reinforces our belief that political networks can be a useful instrument in

different contexts.

As a collateral effect, the political network electoral system gives rise to a new method

for selecting key players in social networks, whose goal is to find proportional

representations of them. Besides that, the edge removal algorithm developed to handle

vote transfer processes engenders a mechanism to transform the network into a

simplified version where only relations involving key players exist, but where the

strengths of such relations have been updated to reflect all relations among non key

players in the original network. We listed two possible uses for these resources, but did

not go deep into them. We leave this task as future research.

References

Bartels LM (2008) The irrational electorate. The Wilson Quarterly (Woodrow Wilson

International Center for Scholars) 32, no. 4: 44-50.

Birch S (2005). Single-member district electoral systems and democratic transition.

Electoral Studies 24, no. 2: 281-301.

Borgatti, Stephen P. "Identifying sets of key players in a social network."

Computational & Mathematical Organization Theory 12, no. 1 (2006): 21-34.

Boldi P, Bonchi F, Castillo C and Vigna S (2009). Voting in Social Networks.

Proceedings of the 18th ACM conference on Information and knowledge management

(ACM) 18: 777-786.

Brasil (1965). “ Lei 4.737.” 15 de 7 de 1965.

Castro RC (2016). Identificação do Real Beneficiário e Busca Patrimonial por Grafos de

Relacionamento no ContÁgil – Script “Análises Patrimoniais - SABRE”. In: Prêmio de

Criatividade e Inovação da RFB.

Downs A (1957). An Economic Theory of Democracy. 1st. New York: Harper and Row.

Dummett MAE (1984). Voting Procedures. 1st. Oxford: Clarendon Press.

Ford, B (2002). Multiple-Seat Delegative Elections. Bryan Ford.

http://www.brynosaurus.com/log/2002/1021-DelegativeVoting/multi.html (accessed 2/

19/2017).

Gallagher M (1991). Proportionality, disproportionality and electoral systems. Electoral

studies 10, no. 1: 33-51.

Hardman H and Renwick A (2012). Latvia. Electoral System Change in Europe since

1945.

http://www.electoralsystemchanges.eu/Files/media/MEDIA_151/FILE/Latvia_summary

.pdf (accessed 3/5/2017).

Heidemann J, Klier M and Probst F (2010). Identifying key users in online social

networks: A pagerank based approach.

Hill ID, Wichmann BA and Woodall DR. (1987). Algorithm 123, single transferable

vote by Meek’s method. Computer Journal 30, no. 3: 277-281.

Kemeny JG and Snell JL (1976). Finite Markov Chains. New York: Springer.

Leenknegt G and Schyff G (2007). Reforming the Electoral System of the Dutch Lower

House of Parliament: An Unsuccessful Story. German LJ 8: 1133.

Ministry of Justice of Finland (2016). Determination of the Election Results.

http://vaalit.fi/en/index/onelections/parliamentaryelections/resultinformation/determinat

ionoftheelectionresults.html (accessed 3/5/2017).

Norris P (1997). Choosing electoral systems: proportional, majoritarian and mixed

systems. International political science review (Sage Publications) 18, no. 3: 297-312.

Orr G (2002). Ballot order: Donkey voting in Australia. Election Law Journal 1, no. 4:

573-578.

Ortiz-Arroyo, Daniel. "Discovering sets of key players in social networks." In

Computational Social Network Analysis, 27-47. Springer, 2010.

Page L, Brin S, Motwani R and Winograd T (1999). The PageRank citation ranking:

Bringing order to the web. Stanford InfoLab.

Pedroche F (2010). "Ranking nodes in social network sites using biased PageRank." 2º

Encuentro de Álgebra Lineal Análisis Matricial y Aplicaciones, ALAMA-2010.

Universidad Politécnica de Valencia.

Pildes RH and Donoghue KA (1995). Cumulative voting in the United States.

University of Chicago Legal Forum: 241-313.

Popkin SL (1994). The reasoning voter: Communication and persuasion in presidential

campaigns. University of Chicago Press.

Scott J (2012). Social network analysis. Sage.

Shenkman R (2009). Just how Stupid are We?: Facing the Truth about the American

Voter. Basic Books.

Subelj L, Furlan S and Bajec M (2011). An expert system for detecting automobile

insurance fraud using social network analysis. Expert Systems with Applications

(Elsevier) 38, no. 1: 1039--1052.

Tideman N (1995). The single transferable vote. The Journal of Economic Perspectives

9, no. 1: 27-38.

Wikipedia (2016). "Open list." Wikipedia, The Free Encyclopedia.

https://en.wikipedia.org/w/index.php?title=Open_list&oldid=756581891 (accessed

3/5/2017).

Wikipedia (2017). "Social network analysis software." Wikipedia, The Free

Encyclopedia.

https://en.wikipedia.org/w/index.php?title=Social_network_analysis_software&oldid=7

68741771 (accessed 3/5/2017).

Political Network Electoral System

Appendix
In this appendix we model the political network electoral system mathematically and

prove that:

1. the number of candidates that are declared elected by the political network

system matches the number of available seats (Theorem 1);

2. any implementation that satisfies the definition of the political network system

produces the same set of elected candidates, regardless of implementation details

that are not specified in this definition (Theorem 2).

3. the system can be implemented by a finite computer procedure (Theorem 3),

using acceptable amounts of processing time (Theorem 6) and space (Theorem

7);

4. to better understand the structure of the political network, we can generate an

alternative network structure that, in terms of vote transferring, behaves exactly

as the original network structure would behave if a certain arbitrary set of

candidates had been elected or eliminated and where none of them play the role

of middle men in any vote transferring path (Theorem 8);

5. the order in which candidates are declared elected or eliminated does not affect

the final result of the election (Theorem 9);

6. solid network coalitions (among them party-list coalitions) are guaranteed to

elect at least the floor of
��∙�� , where �� is the number of votes obtained by the

party, � is the total number of valid votes and � is the number of seats

available, just like in typical party-list systems and solid coalitions in single

transferring voting systems (Theorem 4 and Corollary 10);

7. the elected candidates of each isolated party-list coalition are always those who

received more votes individually, just like in most open party-list systems

(Theorem 5);

We also show that the rounding errors introduced by the use of a finite precision

computational implementation won’t break the guarantee of the total number of elected

candidates (Corollary 6) neither the guarantee of the minimum number of elected

candidates in a solid network coalition (Corollary 9).

Basic Definitions

In this section, we present a definition for the political network electoral system that is

totally equivalent to the one in the main text, but that is subdivided in useful concepts

that will be referred from the theorems.

Definition 1: political network electoral system

The political network electoral system is an electoral system such that, starting from the

conditions specified in Definition 2, the elected candidates are determined by Procedure

1 and where the operation that performs vote transfers, vote discards and adjusts in the

current quota satisfies Definition 5.

Definition 2: conditions to start the processing of votes

The conditions to allow the start of vote processing in the political network electoral

system are

• The candidates need to form a political network (Definition 3);

• Voters should have voted in one and only one candidate.

Definition 3: political network

A political network is a set of ? candidates to 9 seats where each candidate, �, has a

set of neighbor candidates and each neighbor is associated to a percentage of votes to be

transferred to him or her if any transfer of votes takes place with origin in �. If the a set

of neighbors is not empty, the sum of all percentages associated to its members is one.

Procedure 1: general procedure of the political network electoral system

1. Eliminate party virtual candidates

2. Transfer and discard votes

3. While there are remaining candidates (Definition 4)

a. While there are remaining candidates with at least as many current votes

(Definition 11) as the current quota (Definition 10)

i. Declare candidates with at least as many current votes as the current

quota to be elected

ii. If there are no remaining candidates with more than zero votes and

none of them can receive votes from any elected candidate or there

are no remaining candidates with more than zero votes and all seats

are filled

1. Fill the remaining seats declaring some candidates elected

using any arbitrary criterion, eliminate all remaining

candidates, terminate the election and exit

iii. Transfer and discard votes

b. If there are remaining candidates

i. Eliminate the candidate with least current votes

ii. Transfer and discard votes

Definition 4: remaining candidate

A remaining candidate is a candidate that has not yet been declared to be elected or

eliminated.

Definition 5: procedure to transfer votes and discard votes

The procedure to transfer and discard votes is any procedure that in a finite number of

steps, results in the same number of votes in any candidate as a, possibly infinite,

process that

• never transfer non transferrable votes (Definition 6);

• changes the number of votes in any candidate only through direct vote transfers

(Definition 7) or votes discards (Definition 8);

• converges to a state where

o all transferable votes have reached remaining candidates except for the

votes that cannot reach a remaining candidate through any number of

direct vote transfers;

all transferrable votes that cannot reach a remaining candidate through any number of

direct vote transfers have been discarded.

Definition 6: transferrable votes

The transferrable votes are:

• all current votes of an eliminated candidate;

• all current votes beyond the current quota (Definition 11) of an elected

candidate.

Definition 7: direct vote transfer

A direct vote transfer is the subtraction of C votes from the current number of votes of a

candidate �� and the addition of C ∙ ��� votes to the current number of votes of each

neighbor �� of ��, where ��� is the percentage of votes that �� chose to transfer to ��.

Definition 8: vote discard

To discard an amount of votes is to subtract that amount from the total number of

current valid votes and from the current number of votes of the candidate to whom they

currently belonged.

Definition 9: current quota

The current quota is equal to the number of current valid votes (Definition 11) divided

by the number of seats being disputed in the election.

Definition 10: current number valid votes

The current number of valid votes is the number of valid votes minus the number of

votes that have already been discarded by the election procedure.

Definition 11: candidate current number of votes

The current number of votes of a candidate is the number of votes received by the

candidate from the voters plus to the total number of votes transferred to the candidate

from other candidates minus the total number of votes transferred from the candidate to

other candidates minus the total number of votes of the candidate that were discarded

during the execution of Procedure 1.

Mathematical representation

In the political network electoral system, each candidate �� | 1 ≤ F ≤ ?, where ? is the

number of candidates, chooses a set of neighbors, 	� = GH�� I1 ≤ , ≤ C�}, where H�� is a

neighbor of �� and C� is the number of neighbors of �� and indicates for every 1 ≤ , ≤C� the percentage of votes, ��� that should be transferred to H�� if he or she is eliminated

from the election or has more votes than necessary to be elected in such way that, ∀	� ≠ ∅, ∑ ���LM�MN6 = 1.

It happens that a candidate is not forced to choose at least one neighbor. Only in this

case, there is no way to transfer his or her votes and the equality above does not hold.

Any transfer of votes with origin in a candidate without neighbors becomes a vote

discard.

To handle this condition automatically, we defined �� as a virtual discard candidate that

receives all votes that should be discarded. If a candidate �� chose no neighbors, it is

defined that 	� = {��} and ��� = 1, meaning that all transfers are done directly to the

discard virtual candidate, sparing us from an explicit vote discard. Thus, we have that, ∑ ����M�MN6 = 1 for any candidate.

If, at any moment, there is a cycle in the network containing no remaining candidates,

the transferable votes of any candidate in the cycle will have to be discarded. In this

case, we do the discard subtracting such votes from their owners and adding them to ��. The fact that �� is not their neighbor, for this operation, does not matter.

Relations in the political network are not symmetric, so �� ∈ 	� does not imply that

�� ∈ 	�.
We call, �, the set of virtual candidates representing parties. They can be voted but

cannot be elected and are eliminated in the very beginning of the election. Their votes

are transferred to the members of the party.

So, ∀�O ∈ �, 	O = {HPQ ∈ �O} ∧ �O� = 1/|�O|, where �O is the set of candidates that

are members of the party that is represented by the virtual candidate �O.

The political network is thus a directed graph (Diestel 2000) where the nodes are the

candidates (being one of them the virtual discard candidate and some of them the virtual

candidates representing parties) and there is an edge going from �� to �� if and only if

�� ∈ 	�. Every edge is annotated with a real number between zero and one, which is the

transfer percentage from �� to ��. The number annotated in the outgoing edges of any

node sum one.

Let 9, be the number of seats in dispute, 0� the number of individual votes received by

candidate �� and 0 = ∑ 0�LM�MS , the total number of valid votes.

We call 0� the number of votes in candidate �� that corresponds to the total number of

discarded votes. Initially, 0� = 0.

The number of current valid votes is 0
 = 0 − 0� and is initially equal to 0. The current

quota is 3
 = 0
/9. At the same time, 0
�, is the current number of votes in �� or the

number of votes that currently belong to ��.
We call the set of already elected candidates 7, the set of already eliminated candidates 8 and the set of remaining candidates �. We will call ! the set of all candidates

including the virtual candidates representing parties, but not including the virtual

discard candidate.

We call a vote package a structure �0 = (�, 0, UV), where � is a candidate, 0 is a real

number representing the amount of votes in the package and UV is an identifier that

gives the package a non ambiguous identification.

Implementation of the political network electoral system

In this section we present an implementation for the political network electoral system

which leaves some procedures open. We will show latter that any implementation that

satisfies the definition of the political network system is equivalent to this

implementation with some variation of the procedures left open.

As it can be directly verified, Procedure 2, Procedure 3 and Procedure 4 are equivalent

to Procedure 1. They just operate over the mathematical structures defined in the

previous section.

Procedure 2: central procedure of the political network election

4. � ← ! // Initially, all candidates are remaining candidates

5. 7 ← 8 ← ∅ // Nobody is initially elected neither eliminated

6. 0
 ← 0 // The current number of valid votes is initially equal to the number of valid votes

7. ∀i, 0
� ← 0� // Initially each candidate has the number of votes that he or she received individually

8. Call 8X���YZ������[ZX�Z��\!ZY]�]Z��^_Y]`�ZYP������^()
9. While � ≠ ∅

a. aℎcdefghFi = j]�Y��P\8X�k��]_Y]`�ZY^P������^()
b. If (aℎcdefghFi) 8l��

c. If � ≠ ∅

i. Call 8X���YZ��]7Z^�_Y]`�ZY^P������^()

Procedure 3: j]�Y��P\8X�k��]_Y]`�ZY^P������^()

10. 74 ← {��|�� ∈ �^0
� ≥ 3
}; // Creates a temporary set containing those candidates

who have just reached the quota

11. While 74 ≠ ∅

a. 7 ← 7 + 74 // Puts the recently elected in the set of elected candidates

b. � ← � − 74 // Removes elected from the set of remaining candidates

c. If o���k�8l��!�Y]����Y()
i. Call ��XX���Z�Y�Y���Z�^()

ii. Call 8X���YZ�����Z�Y�Y�!ZY]�]Z��^()

iii. ���[�Y ��[�

d. Call `�ZY^P������^_Y]p�]Z��q[��Z(74);
e. 74 ← {��|�� ∈ �^0
� ≥ 3
}; // others may be elected as a consequence of vote

transfers and reduction of the current quota.

12. ���[�Y PZX^�

Procedure 4: 8X���YZ��7Z^�_Y]`�ZY^P������^()

13. 84 ← {min (��, ∀�� ∈ �)} // Creates a temporary set containing only the eliminated

candidate

14. 8 ← 8 + 84 // Adds that set to the set of eliminated candidates

15. � ← � − 84 // Removes the set of eliminated candidates from the set of remaining

candidates

16. Call `�ZY^P������^_Y]p�]Z��q[��Z(84)

In Procedure 4, min (��, ∀�� ∈ �) is a function that returns the remaining candidate

with the least number of votes. It is assumed that if there is a tie some arbitrary criterion

will choose a single candidate among the ones with least votes to be the result of min (��, ∀�� ∈ �).

Procedure 5: 8X���YZ������[ZX�Z��\!ZY]�]Z��^_Y]`�ZYP������^()

17. 8 ← 8 + � // Adds all virtual party candidates to the set of eliminated candidates

18. � ← � − � // Removes the virtual party candidates from the set of remaining

candidates

19. Call `�ZY^P������^_Y]p�]Z��q[��Z(�)

We still need to write `�ZY^P������^_Y]p�]Z��q[��Z(!4), where !4 is the set of

candidates that have been just elected or eliminated, in a way that incorporates all

variations admitted by Definition 5 and that can help us to prove our target theorems

latter. We do that through Procedure 6, Procedure 7 and Procedure 8.

Procedure 6: `�ZY^P������^_Y]p�]Z��q[��Z(!4)

20. Call p�]Z��`����X���kZX���u��"!�Y��Y��Y�X\(!4)
21. 34 ← <0
 − !ZXk[XZ��`��ZXo�^kZ�]^()=/9 // Calculates the correct quota for the end of

this procedure

22. Call `�ZY^P������^_kk��]�Y�`�q[��Z(34)

23. 3
 ← 34

Procedure 6 starts calling procedure p�]Z��`����X���kZX���u��"!�Y��Y��Y�X\(!4). The

definition of the political network electoral system does not authorize any changes in

the network. Bellow, we define this procedure accordingly.

Definition 12: p�]Z��`����X���kZX���u��"!�Y��Y��Y�X\<!4 =

A suitable implementation of p�]Z��`����X���kZX���u��"!�Y��Y��Y�X\(!4) is any

implementation that only changes the structure of the political network in ways that

cannot make the result of the election different from the result that would be obtained if

no changes were made.

Procedure 6 depends on the function !ZXk[XZ��`��ZXo�^kZ�]^() that is defined bellow.

Definition 13: !ZXk[XZ��`��ZXo�^kZ�]^()

A suitable implementation of the !ZXk[XZ��`��ZXo�^kZ�]^() is any implementation that

returns a value that makes it possible for Procedure 6 to end in a way that is consistent

with the definition of the electoral system.

We will show latter (Lemma 14) that the value that can be returned by

!ZXk[XZ��`��ZXo�^kZ�]^() is unique and can, indeed, be calculated with the information

that is available in the beginning of Procedure 6.

Let’s now write Procedure 7, which implements a vote transfer process for a given

target quota, assuming that, in the end, it will be correct.

Procedure 7: `�ZY^P������^_kk��]�Y�`�q[��Z<q4 =

24. v ← ∅ // creates a, initially empty, structure to contain all vote packages waiting to

be transferred

25. ∀�� ∈ 8|0
� > 0 // For all eliminated candidates that still have any votes

a. _]]�Zk"Z�� xv, �0� = <�� , 0
� , ?UV=y // puts, in v, a vote package containing

all votes in the eliminated candidate. ?UV represents a new identifier

b. 0
� ← 0 // No votes remain in the eliminated candidate 26. ∀�� ∈ 7|0
� > 34 // For all elected candidates with surplus votes
a. _]]�Zk"Z�� xv, �0� = <�� , 0
� − 34 , ?UV=y // The packages associated to elected

candidate contain only the surplus votes

b. 0
� ← 34 // A number of votes identical to the quota is kept in the candidate

27. Call `�ZY^P������^(|)
Procedure 8: `�ZY^P������^(v)

28. ?} ← 0 // Variable ?} is used to count the steps of the following loop till an

arbitrary limit 9~�}�g�}

29. While v ≠ ∅ ∧ ?} < 9~�}�g�} // while there are votes to be transferred and the

arbitrary limit to the number of steps has not been reached

a. <0�� = (�� , 04� , UV)= ← ������_�Zk"Z��(v) // 0�� is a package of votes built

by a criterion that will be discussed latter, using votes in v. 04� is the number

of votes in the package and differs from 0
� which is the number of votes in

the candidate.

b. ∀���|��� ∈ 	� // For all neighbors of �� i. If ��� ∈ � ∪ {��}

1. 0
�� ← 0
�� + 04� ∙ ��� // Transfer the votes according to the

specified percentage. Such transfer represents a discard when ��� = ��

ii. Else // votes will be transferred again
1. _]]�Zk"Z�� xv, �0�� = <��� , 04� ∙ ��� , ?UV=y

c. ?} ← ?} + 1

30. 0� ← 0� + ∑ 04�∀��6∈v // discards all votes that are still in v

31. 0
 ← 0 − 0� // adjusts the number of valid votes

In Procedure 7, we created a structure, v, to contain all vote packages that are waiting

to be transferred and passed such structure as a parameter to Procedure 8.

We say that a vote package was processed by Procedure 8 when it was removed from v

and returned by ������_�Zk"Z��(v) and consequently submitted to the commands

within the loop defined in the procedure. We define ������_�Zk"Z��(v) bellow.

Definition 14: ������_�Zk"Z��(v)

A suitable implementation of ������_�Zk"Z��(v) is any implementation that returns a

package of votes �0 = (�, 0, UV) and removes it from v and that, if convenient,

performs arbitrary join operations and arbitrary split operations to any packages in v, as

long as it allows no package to stays forever in v.

Lemma 1: existence of a suitable implementation of ������_�Zk"Z��(v)

An implementation of ������_�Zk"Z��(v) that performs no joins or splits and returns

the vote packages in a first in first out manner satisfies Definition 14.

Proof:

When a vote package, 0�, enters v, the number of packages ahead of it is finite. If all

packages that are generated latter are put after 0�, it is guaranteed that for a sufficiently

large value for 9~�}�g�}, 0� will be returned. ∎

Definition 15: canonical variation of ������_�Zk"Z��(v)

The canonical variation of ������_�Zk"Z��(v) is the variation that performs no joins

or splits and returns the vote packages in a first in first out manner.

In the definition of the voting transfer process, transfers are direct. There is no

intermediate structure. However, to prove our target theorems, we need to keep track of

where each vote came from and not only of the total number of votes in each candidate.

The structure v will help with that.

We will show in Lemma 3, that any procedure that satisfies Definition 5 is equivalent to

a variation of Procedure 6. Before that, we need a preparatory lemma.

Lemma 2: amount of votes in each candidate after an operation of vote transferring

In the end of `�ZY^P������^_Y]p�]Z��q[��Z(!4), any eliminated candidate �� has zero

votes and any elected candidate has 3
 votes, where 3
 is the current quota.

Proof:

By the definition of the political network electoral system, any votes in an eliminated

candidate are transferable. The definition also says that all transferrable votes must be

transferred till they reach a remaining candidate, or, if that is impossible, they must be

discarded. In any case, no votes can stay in the eliminated candidate.

Any vote in an elected candidate beyond 3
 is also transferrable and thus cannot stay in

the candidate. If such votes exist when `�ZY^P������^_Y]p�]Z��q[��Z(!4) is called

they must be transferred or discarded and they cannot exist in the end of the procedure.

At the same time, any candidate that is claimed to be elected, at that moment, has at

least 3
 votes and since votes bellow 3
 are not transferrable there will never occur a vote

transfer that will leave him or her with less than 3
 votes. The possibility that, latter,

the current quota could be changed in a way that makes it larger than the number of

votes in the candidate also does not exist, since, by definition, it can only go down. This

proves the present lemma. ∎

Lemma 3: covering of all possible vote transferring procedures by Procedure 6

For any arbitrary implementation of the procedure `�ZY^P������^_Y]p�]Z��q[��Z(!4)
that satisfies the definition of the political network electoral system there is a variant of

Procedure 6 under which the number of votes left in every candidate �� converges to

the number of votes left by the arbitrary implementation, when 9~�}�g�} tends to

infinite.

Proof:

Definition 5 says that any implementation of `�ZY^P������^_Y]p�]Z��q[��Z(!4) must

achieve the same results as a, possibly infinite, process that works under some

restrictions that are enumerated in the definition itself. Let’s call such canonical process

���c�F��e��c��aa.

In its end, ���c�F��e��c��aa will have to achieve a value, 34 , for the current quota

(Definition 9). The function !ZXk[XZ��`��ZXo�^kZ�]^(), which is still open, can return

the value 9 ∙ (3
 − 34), where 3
 is the current quota in the beginning of Procedure 6 and

lead the very same quota.

Definition 5 determines that all vote transfers should be done through direct vote

transfers (Definition 7). Other than that, ���c�F��e��c��aa can only discard votes that

could not be transferred to a remaining candidate by any number of direct transfers.

Thus, ���c�F��e��c��aa can only change the number of votes in any candidate through a

sequence of operations, �� = (@L, @A, … , @�, …), where ∀F, @� is a direct vote transfer

or a vote discard. Given the source candidate ��� and the amount of votes, 04�� , that are

going to be transferred from ���, a direct transfer is fully determined, that is, we already

know how many votes will go to each other candidate. A vote discard can also be

described by the source candidate, ���, and amount of votes, 04�� to be discarded. So we

can specify @� by @� = (UaVFa���f�, ���, 04��), where UaVFa���f� is a Boolean

separating transfers from discards.

At any point between any two operations, the state of the full transfer process can be

described by the number of votes, 0�, in each candidate ��. Note that the number of

votes in �� determines the number o current valid votes and thus the current quota.

The sequence of operations is restricted by the fact that only transferrable votes can be

transferred or discarded. Thus, ∀@�, ��� ∈ 7 ∪ 8, ∀@�|��� ∈ 7, 04�� ≤ 0� − 31 ≤ 0� − 34 and ∀@�|�� ∈ 8, 04�� ≤ 0�,
where 31 is the current quota immediately before the application of @�.
Let’s show that we can simulate �� with a variation of Procedure 6. We will do that,

starting with the canonical implementation of ������_�Zk"Z��(v) and performing

convenient package joins and splits. Let’s call the process that is driven by the variation

of Procedure 6, �c�����c��aa.

Let’s call o the set of candidates from whom there is no path to a remaining candidate

in the political network and o� the set of candidates from whom there is such a path.

Clearly, votes in candidates that belong to o can never reach a remaining candidate.

They can be discarded by the ���c�F��e��c��aa at any moment and must be discarded by

it at some point. Votes in a candidate � that belongs to o� cannot be discarded. With

enough direct vote transfers, at least a certain percentage � > 0 of them would

eventually reach a remaining candidate. If the ���c�F��e��c��aa chose to discard � > 0

votes of the 05 votes in �, even if � was very small, after the discard, it would still only

count on direct vote transfers to transfer votes. Direct vote transfers are inflexible, thus

the ���c�F��e��c��aa could not force more than the same percentage � of the votes left

in � to reach remaining candidates. That would be equal to � ∙ (05 − �) < � ∙ 05,

violating the definition of the political network system, which requires that all votes that

can be transferred to remaining candidates are transferred to them.

Let’s call 0�� the number of votes in candidate �� in the �c�����c��aa, while 0� is the

number of votes in candidate �� in the ���c�F��e��c��aa. Let’s call 0�� the total number of

votes in packages associated to �� in v in the �c�����c��aa.

We say that the state of the �c�����c��aa is equivalent to the state of the

���c�F��e��c��aa if and only if ∀,|�� ∈ � ∪ {��}, 0� = 0�� ∧ 0�� = 0,

∀,|�� ∈ 8 ∩ o�, 0� = 0�� ∧ 0�� = 0,

∀,|�� ∈ 7 ∩ o�, 0� = 0�� + 34 ∧ 0�� = 34 ,
0� + 2 0�∀�|5�∈8∩o + 2 0� − 34

∀�|5�∈�∩o = 0�� + 2 0��∀�|5�∈8∩o + 2 0��∀�|5�∈�∩o

∀,|�� ∈ 8 ∩ o, 0�� = 0

∀,|�� ∈ 7 ∩ o, 0�� = 34 ,
By Lemma 2, in the end of `�ZY^P������^_Y]p�]Z��q[��Z(!4) the number of votes in

any eliminated candidate is zero and the number of votes in any elected candidate is

equal to the current quota. This means that under the ���c�F��e��c��aa their number of

votes must converge to such values.

Thus, in the ���c�F��e��c��aa, after a large enough number of steps, �~��g?D9}�g�},

we will have that ∀,|�� ∈ 8, 0 ≤ 0� < � and ∀,|�� ∈ 7, 0 ≤ 0� − 34 < �, for any small

�. At the same time, when , 9~�}�g�} is reached �c�����c��aa ends and all votes in v

are discarded, making ∀,, 0�� = 0.

If the state of ���c�F��e��c��aa after �~��g?D9}�g�} is equivalent to the state of

�c�����c��aa at its end, it is algebraically implied that ∀, ≠ 0, I0� − 0��I < �, and

I0� − 0��I < ? ∙ �, where ? is the number of candidates. Thus the two process must be

converging to the same state when 9~�}�g�} tends to infinite.

We must show that the equivalence between the two processes can always be kept.

Before the first direct transfer occurs, Procedure 7 puts in v, vote packages that

establish the equivalence directly.

From that point on, it is easy to check that for every @�, if @�is a vote discard, nothing

needs to be done, if it is a vote transfer, ������_�Zk"Z��(v), can always return the

vote package 0�� = (���, 04��, UV) what leads Procedure 8, to keep the state of the

�c�����c��aa equivalent to the state in the canonical process immediately after the

application of @�.
Note that, if the states were equivalent before the transfer operation, the necessary

number of votes, is always available in v. Since ������_�Zk"Z��(v) can join and split

packages, it can always form a single package with the correct number of votes and

return it.

The single package to be returned can be formed taking � packages, associated to ��� in

their order of entrance in v, in such way that ∑ 0����� ≤ 04��, and join them, summing all

their votes into the new package. If ∑ 0����� = 04��, the new package is done. If ∑ 0����� <04��, we can take the � + 1��package associated to ��� in | and split it in two, leaving

the first package with 04�� − ∑ 0����� votes. Adding this package to the package to be

returned, it will be done.

It is important to notice that, forming packages in the way described above guarantees

that no package can be left in v forever, what is a requirement of Definition 14.

So the equivalence can be kept proving the present lemma. ∎

Useful lemmas

To easy the discussions to come, in this section, we show some useful lemmas.

Lemma 4: election constant

During the execution of Procedure 2, the sum of the total votes in real candidates, with

the total votes in virtual party candidates, with the total number of discarded votes and

with the total number of votes in vote packages in v is a constant equal to the original

number of valid votes.

Proof:

Initially all votes are in real candidates or virtual party candidates and they correspond

to the number of valid voters in the election, thus, at this moment the present lemma

holds. It is easy to verify that additions to any of the values that are relevant to the

present lemma are accompanied by equivalent subtractions some other of this values,

keeping the lemma valid. ∎

Lemma 5: determination of additions and discards by the total amount of votes in processed

packages

In an execution of Procedure 8, the total number of votes, �0�, added to any candidate �� ∈ � ∪ {��} are given by �0� = ∑ �0� ∙S��L ���, where �0� is the total number of

votes associated to candidate �� in packages that were processed by Procedure 8.

Proof:

It is direct from Procedure 7 and Procedure 8, that any addition of votes to any �� ∈� ∪ {��} is a consequence of the processing of some package 0�� and is given by

0� ∙ ���, where 0� is the number of votes in 0�� and ��� is the percentage of transfer from

�� to �� specified in the structure of the political network. where �� is the candidate

associated to 0��. The veracity of the present lemma is immediate. ∎

We will show in Lemma 8 and Corollary 4 , that we can join and split vote packages

without changing the results of Procedure 8 and Procedure 7. This conclusion can be

used both to prove that the joins and splits performed within ������_�Zk"Z��(v) in

the proof of Lemma 3 do not change the results of the election and to prove that adjusts

in the structure of the network performed within

p�]Z��`����X���kZX���u��"!�Y��Y��Y�X\(!4) that happen to have an effect that is

equivalent to joins of vote packages also do not change such results.

Before proving Lemma 8, we will need a few more definitions and preparatory lemmas.

Every package 0�� processed by Procedure 8 can generate new packages and add them

to v. The processing of these packages, in turn, generate even more packages. Since

every package is generated by the processing of a single parent package, the complete

set of packages indirectly generated by 0�� form a tree whose root is 0��.

Definition 16: vote package tree

A vote package tree ~0� , with root 0��, is the tree composed by 0�� and any package

generated by Procedure 8 when it process any package belonging to ~0� and where the

parent of any package is the package from which it was generated.

Corollary 1: identification of a vote package in a vote package tree

Writing 0�� ≡ }���, we can uniquely indentify any package 0�� in the vote package

tree with root 0�� by the sequence of candidates }��� = {����|0 ≤ i ≤ ℎ} , indicated in

the packages that are in the path of length ℎ, from 0�� till 0�� in the tree, where

���� = �� e ���� = ��.

Proof:

Since the processing of each candidate by Procedure 8 cannot generate more than one

package associated to the same candidate, we can identify the package by its parent and

the candidate associated to it. Since the structure is a tree, the veracity of the present

lemma is direct. ∎

Corollary 2: identification of a vote package in a forest of vote packages

Writing 0�� ≡ (0�� , }���), we can uniquely identify a vote package 0�� in a forest of

vote packages by the pair (0�� , }���), where 0�� is the root of the tree to which 0��

belongs and }��� is the sequence of candidates the identifies 0�� in this tree.

Proof:

Procedure 8 process a package 0�� only once, so the tree associated to 0�� is unique.

From this and Corollary 1 follows the present corollary. ∎

Lemma 6: amount of votes in a packages belonging to a tree

The number of votes in package 0�� ≡ (0��, }���), 0� is given by 0� = 0� ∏ �(��L)����L ,

where, ℎ is the length of }��� and �(��L)� is the percentage of transfer to the tth

candidate in }��� from the tth-1 candidate in }���, as defined in the structure of the

network.

Proof:

If the length of }��� is 1, 0�� = 0�� and the result is trivial.

Procedure 8, defines the number of votes of each package 0�� generated by the

processing of a package 0��, by 0�� = 0�� ∙ ���, where ��� is the percentage of transfer

from 0�� to 0��. If the present lemma holds for paths of length ℎ − 1, then the number

of votes in the parent of 0��, 0���L is given by 0��L = 0� ∏ �(��L)���L��L .

Using 0� = 0��L ∙ �(��L)� , the result is immediate. ∎

Corollary 3: alignment of vote packages trees

If we take two packages 0�� and 0�� such �� = ��, for any package 0��� belonging to a

tree of root 0��, identified by the sequence of candidates }�, there is one and only one

package 0��� belonging to a tree of root 0�� identified by the same sequence.

Proof:

The candidates indicated in the packages that are generated in the processing of any

package 0��, by Procedure 8 only depend on ��, the candidate associated to 0�� and not

on 0�, the amount of votes in 0�� so the structures of the generated trees are identical

proving the present corollary. ∎

Definition 17: package equivalent to a finite set of packages

We say that a package 0�� = (�, 0�, UV�) is equivalent to a finite set of packages }� = {0��|0�� = (�, 0�, UV�), 1 ≤ � ≤ a} if and only if ∑ 0� = 0� ��L .

Definition 18: package equivalent to an infinite set of packages

We say that a package 0�� = (�, 0�, UV�) is equivalent to an infinite set of packages }� = {0��|0�� = (�, 0�, UV�), 1 ≤ �} if and only if lim →£ ∑ 0� ��L = 0�.

Definition 19: equivalence of a tree to a forest

We say that a tree of votes ~0�, of root 0�� is equivalent to a finite or infinite forest ¤0,

whose kth tree we call ~0� of root 0��, if and only if �� = ��, ∀� and if every package 0��� ≡ (0��, }�) is equivalent to the set }�� = {0��� ≡ (0��, }�), ∀0�� ∈ }�}.

Lemma 7: automatic equivalence of a tree to a forest

If a package of votes 0�� is equivalent to a set of finite or infinite packages, }�, the tree ~0�, with root 0�� is equivalent to the forest composed by the trees whose roots are the

elements, 0��, belonging to }�.
Proof:

By Lemma 6, the number of votes in any package 0��� ≡ (0�� , }�), belonging to ~0�

is given by 0�� = 0� ∏ �(��L)����L and the number of votes in a package 0��� ≡
(0��, }�), where 0�� is any element of }�, is given by 0�� = 0� ∏ �(��L)����L .

If }� is finite, ∑ 0� = 0� ��L , if it is infinite lim →£ ∑ 0� ��L = 0�. In any case, with

algebraic manipulations and using the definitions of package equivalence (Definition 17

and Definition 18) we conclude that 0��� is equivalent to the set }�� = {0��� ≡(0��, }�), ∀0�� ∈ }�}.

By the definition of equivalence of trees to forests (Definition 19), the present lemma is

immediate. ∎

Definition 20: package join

We say that we joined a set a packages, }�, if we remove all packages belonging to }�

from v, prevent any other members of }� from being put in v and put in v a package 0�� that is equivalent to }�

Lemma 8: insensitivity to package joins

If we join a set of packages, }�, into a package 0�� when 9~�}�g�} tends to

infinite, for every �� ∈ � ∪ {��}, the value to which 0� tends in the end of Procedure 8

and in the end of Procedure 7 does not change.

Proof:

By Lemma 5, it suffices to show that the total votes, �0� , in packages associated to any

candidate ��, processed by Procedure 8, when 9~�}�g�} tends to infinite, tends to a

value that does not depend on whether we have performed or not the join of }�.

By Lemma 7, each 0��� ≡ (0�� , }�) generated as a direct or indirect consequence of

the addition of 0�� to v is equivalent to the set of packages }�� = {0��� ≡(0��, }�), ∀0�� ∈ }�} whose elements will be either removed from v or prevented

from being generated by Procedure 8 and put in v as a consequence of the joining

operation of }� into 0��.

Let �@ be line of processing where the joining operation did not take place and �~ be a

line o processing where it did.

Let �@� be the value to which tends �0� the total amount of votes in packages

associated to a candidate �� processed in Procedure 8 when 9~�}�g�} tends to

infinite in line �@.

Let �~�, be the value to which tends �0� the total amount of votes in packages

associated to a candidate �� processed in Procedure 8, when 9~�}�g�} tends to

infinite in line �~.

No package can stay forever in v in line �@, since that is a requirement of Definition

14. Since the join only adds one package to | and does not change the order of the

other packages, package can stay forever in v in line �~ also.

Let’s suppose that �@� > �~� and reach a contradiction.

If in line �@, �0�, tends to �@�, so for some value, ci, of 9~�}�g�}, �0� becomes

greater than �~�.

For some value, �i, of 9~�}�g�}, any package 0�� not involved in the join operation

which is processed till step ci in line �@, will also have been processed in line �~.

At the same time, in line �~, for a large enough �i, any package 0��� equivalent to

some set }�� which has had at least one element processed in line �@ till step ci will

have been processed.

Since the amount of votes in 0��� is equal to the total amount of votes in all packages

belonging to }��, The sum of all processed packages associated to candidate ��, �0� ,

would have to be greater than �~� in line �~, what is a contradiction.

Now let’s suppose that �@� < �~� and also reach a contradiction.

If in line �~, �0� tends to �~�, then for some value, �i, of 9~�}�g�}, �0� becomes

larger than �@�. Let’s call the value of �0� at step �i, �0�¥�.

Since no package can stay forever in v, for some value ci of 9~�}�g�}, any package 0�� not involved the join operation which is processed till step �i in line �~, will also

have been processed in line �@.

If }� is finite, in line �@, for a large enough ci any package 0��� ∈ }��, where }�� is

equivalent to some package 0��� which has been processed in line �~ till step �i will

have been processed. That would make �0� larger than �@� in line �@, what is a

contradiction.

If }� is infinite, for a large enough ci, for any 0��� processed in line �~ till step �i,

any package 0��� ∈ }�� , k < l, where }�� is equivalent to 0��� and l is as large as

desired will have been processed in line �@. Let’s call the value of �0� at step ci, �0�§�.

Under this conditions, we can choose l in order to guarantee that

0�� − ¨ 2 0����©ª∈«�ª,¬­� ® < ¯, ∀0���
for any chosen ¯.

Consequently, calling }�¥� the set of all 0��� belonging to the tree of root 0�� which

have been processed in line �~ till step �i

2 ¨0�� − 2 0����©ª∈«�ª,¬­� ®∀��°ª∈«�±²
< ¯ ∙ |}�¥�|

and

2 0��∀��°ª∈«�±²
= �0�¥�

If we choose ¯ = ³�ª±²�³´ª|«�±²| , we have that

2 ¨0�� − 2 0����©ª∈«�ª,¬­� ®∀��°ª∈«�±²
< �0�¥� − �@�

2 0��∀��°ª∈«�±²
− 2 2 0����©ª∈«�ª,¬­�∀��°ª∈«�±²

< �0�¥� − �@�

�0�§� ≥ 2 2 0����©ª∈«�ª,¬­�∀��°ª∈«�±²
> �@�

So, �0� becomes greater than �@� in line �@, what is a contradiction.

The only remaining possibility is that �@� = �~�, what proves the present lemma for

Procedure 8.

Since, except for Procedure 8, there is nothing in the scope of Procedure 7, that can be

affected by the join operation, the lemma also holds for it. ∎

Definition 21: package finite split

We say that we split a package, 0��, into a set of packages, }�, if we remove 0�� from v and put in v all packages belonging to a finite set, }�, which is equivalent to 0��.

Corollary 4: insensitivity to package finite splits

If we split a package 0�� in a finite set of packages, }�, when 9~�}�g�} tends to

infinite, for every �� ∈ � ∪ {��}, the value to which 0� tends in the end of Procedure 8

and in the end of Procedure 7 does not change.

Proof:

By Lemma 8, we can join }� into 0�� and the results won’t change.

This corollary is just the reflex of that and its veracity is valid as long as we can

guarantee that after the split no package can stay forever in v. Since we are adding a

finite number of packages to v and are not changing the order of processing of any

other packages the present corollary follows. ∎

Uniqueness of the Result of the Election and Implementation in a

Finite Number of Steps

In this section, we show that the result of the an election where the political network

system is employed is unique and that such result can be found in a finite number of

steps. These are the essential requirements to claim that the proposed system is sound

and computationally possible.

To build a finite variation of Procedure 7, we will show that

1. it is possible to build a modified version of the political network that guarantees

that Procedure 8 ends in a finite number of steps without changing its result and

2. we can correctly write the procedure !ZXk[XZ��`��ZXo�^kZ�]^() used by

Procedure 7.

Procedure 9 removes an edge from the political network going from a candidate �� to a

candidate �� (removes �� from 	�). We will prove, in Lemma 9, that its use cannot

change the results of Procedure 8 or Procedure 7.

Procedure 9: ���������������������(!", !�)

3. If 	
� = {��} and 	
� = {��}

a. 	
� ← {��}

b. ��� ← 1

4. Else

a. 	
� ← 	
� − {��} + 	
� − {��} // eliminates �� from the neighbor set of ��, 	
�, but adds all neighbors of �� to 	
�, excepts for �� itself.

b. ∀,|�� ∈ 	
�
i. �
�� ← (�
�� + �
�� ∙ �
��)/(1 − ��� ∙ ���) // corrects the percentages

of transfer to each neighbor

In Procedure 9, if �� wasn’t a neighbor of ��, the old value of �
�� is considered zero. If

�� wasn’t a neighbor of �� them the old value of �
�� is considered zero. At the same

time, if �� wasn’t a neighbor of �� , ��� is treated as being zero.

Lemma 9: edge removal

The application of Procedure 9 by p�]Z��`����X���kZX���u��"!�Y��Y��Y�X\(!4), for �� ∈ 8 ∪ 7, removes �� from the neighbor set of �� (removes an edge from �� to ��)

and the value to which the total amount of votes added to any �� ∈ � ∪ {��} tends

during the execution of Procedure 7, when MAXSTEPS tends to infinite, does not

change.

Proof:

The edge removal does not affect the processing of any vote package that is not

associated to �� (not even when they are associated to ��), thus it suffices to show that

when a package 0�� associated to ��, is processed the use of the modified network

structure is equivalent to the use of the original structure accompanied by some

operations of package joining that do not affect the results of interest. It is worth noting

that a package associated to �� can only be processed if �� ∈ 8 ∪ 7. Since �� ∈ 8 ∪ 7

by hypothesis, for the present lemma we can assume both �� and �� have been elected

or eliminated.

Case 1

If �� and �� were the only neighbors of each other, any vote package 0�� associated to ��, when being processed to Procedure 8, would generate a single package associated to ��, containing all its votes and that when processed would generate a single package

associated ��, closing an infinite cycle and would never transfer votes to any other

candidates. Thus, regardless of how big MAXSTEPS is, the number of votes in 0��
would eventually be discarded. In this context, Procedure 9, immediately discards 0��,
what proves the present lemma for this particular case.

Case 2

In the case where �� ∉ 	
�, Procedure 9 adds to the percentage of votes that would

already be transferred from �� to each �� ∈ 	
�, the value �
�� ∙ �
��, that is the percentage

that would normally be transferred from �� to �� (through a package put in v) and,

latter, from �� to �� (when the package were processed).

∀�� , �� ∈ (7 ∪ 8), the processing of the package 0�� = (��, 04�, UV) by Procedure 8

acting over the original structure would generate a package 0��L = (��, 04� ∙ �
��, UV) and

would generate a package 0�� = (��, 04� ∙ �
��, UV). When 0�� were processed it would

generate the package 0��A = (��, 04� ∙ �
�� ∙ �
��, UV). The join of 0��L and 0��A results in

0�� = (�� , 04�(�
�� + �
�� ∙ �
��), UV) which is identical to the package associated to �� that

is generated by Procedure 8 when it acts over the structure that was modified by

Procedure 9. Since by Lemma 8, the join of packages does not affect the results of

interest, the modifications made by Procedure 9 also do not.

When ∀�� , �� ∈ (� ∪ {�¶}), the processing of the package 0�� = (��, 04�, UV) by

Procedure 8 acting over the original structure would immediately add 04� ∙ �
�� votes to ��

and would generate a package 0�� = (��, 04� ∙ �
��, UV). When 0�� were processed it

would add 04� ∙ �
�� ∙ �
�� votes to ��. When Procedure 8 acts over the structure that was

modified by Procedure 9, 04�(�
�� + �
�� ∙ �
��) votes are added to ��. The total number of

votes added to �� is the same, thus, the present lemma is proved for the cases in which

�� was not a neighbor of ��.

Case 3

If �� was a neighbor of ��, using the original structure, any package of votes associated

to �� when processed by Procedure 8 would generate a single package associated to ��

and a package associated to each of its neighbors belonging to 7 ∪ 8. Besides that, the

neighbors of �� belonging to � ∪ {�¶} would receive direct increments to their votes.

The package associated to ��, when processed, would, in turn, generate a package

associated to �� and a package associated to each of the other neighbors of �� belonging

to a 7 ∪ 8. Besides that, the neighbors of �� belonging to � ∪ {�¶} would receive direct

increments to their votes.

The alternate processing of packages associated to �� and ��, in the cycle that would be

formed, would generate, for each neighbor of �� belonging to 7 ∪ 8 that is not ��, an

infinite set of packages. Besides that, the neighbors of �� belonging to � ∪ {�¶} that are

not �� would receive infinite direct increments to their votes. For each neighbor of ��

belonging to 7 ∪ 8 that is not �� another infinite set of packages would be generated.

The neighbors of �� belonging to � ∪ {�¶} would also receive an infinite number of

direct increments to their votes. ∀�� , �� ∈ (7 ∪ 8), �� ∈ 	
� ∪ 	
� the processing of any package 0�� = (��, 04�, UV) by

Procedure 8 acting over the structure that was modified by Procedure 9 generates a

single package 0�� = <�� , 0��, UV=, associated to ��.

For ∀�� , �� ∈ (� ∪ {�¶}), �� ∈ 	
� ∪ 	
� the processing of any package 0�� = (��, 04�, UV)

by Procedure 8 acting over the structure that was modified by Procedure 9 increments

the amount of votes in ��, 0�, by the value of 0��.

It is direct from Procedure 8 that the amount of transferred votes, 0��, does not depend

on whether �� ∈ (� ∪ {�¶}) or �� ∈ (7 ∪ 8). In all cases, 0�� = �
6�·�
6©∙�
©�L��©6∙�6© .

Thus, it suffices to show that 0�� is equal to the sum of the votes transferred to ��

(either directly or by the generation of packages) in the alternate processing of packages

associated to �� and �� when Procedure 8 acts over the original structure and

MAXSTEPS tends to infinite. In the case in which �� ∈ (7 ∪ 8) that means that the use

of the modified structure has the effect o joining all packages associated to ��, generated

in the alternating process, into an equivalent package, what by Lemma 8 does not

change the results. In the case where �� ∈ � ∪ {�¶} that means that the sum of the

increments to 0� is the same whether or not the structure is modified.

Let ��
 be a neighbor of �� that is not ��. Let �¸̂ be a neighbor of �� that is not ��. Let’s

observe the alternating process between packages associated to �� and �� and sum the

votes transferred to ��
 and �¸̂.
In the first step, 0�� = (��, 04�, UV) is processed. In this step, a number of votes equal to 04� ∙ ��¸̂ are transferred to �¸̂ and it is generated a package associated to �� containing 04� ∙ ��� votes.

In the second step, a package associated to �� containing 04� ∙ ��� votes is processed. So, ��
 receives 04� ∙ ��� ∙ ���
 votes. It is also generated a package associated to �� containing 04� ∙ ��� ∙ ��� votes.

In the third step, a number of votes equal to 04� ∙ ��� ∙ ��� ∙ ��¸̂ are transferred to �¸̂ and it

is generated a package associated to �� containing 04� ∙ ��� ∙ ��� ∙ ���.

In the forth step, a number of votes equal to 04� ∙ ��� ∙ ��� ∙ ��� ∙ ���
 are transferred to ��
 .

It is also generated a package associated to �� containing 04� ∙ ��� ∙ ��� ∙ ��� ∙ ��� votes.

We can observe that the amount of votes transferred to ��
 in each even step is equal to

the amount transferred in the prior even step multiplied by ��� ∙ ��� what is the result of

a movement from �� to �� and another in the inverse direction. This way, we have that

the sum of votes transferred from �� to a ��
 , �0��
 , in the infinite process is given by

�0��
 = lim�→£ 2 04� ∙ ��� ∙ ���
 ∙ (��� ∙ ���)��
��� = 04� ∙ ���
 ∙ ���1 − ��� ∙ ���

At the same time, we can observe that the amount of votes transferred to �¸̂ in an odd

step is equal to the amount of votes transferred in the prior odd step multiplied by ��� ∙ ���. Thus, we have that the sum of votes transferred from �� to �¸̂ in the infinite

process, �0�¸̂ is given by

�0�¸̂ = lim�→£ 2 04� ∙ ��¸̂ ∙ (��� ∙ ���)� = 0� ∙ ��¸̂1 − ��� ∙ ���
�

���

Therefore, ∀�� ∈ (
� ∪ 	
�), the sum of votes transferred to �� in the infinite process,

�0� is given by

�0� = �0�� + �0�� = 0� ∙ �
�� + �
�� ∙ �
��1 − ��� ∙ ��� .
Since that is that is exactly the amount of votes transferred to �� when Procedure 8 acts

over the structure that was modified by Procedure 9, the present lemma is proved. ∎

With Procedure 9, we can remove all candidates that have already been elected or

eliminated from the neighbor sets of all candidates, that is, remove all edges going to

non remaining candidates. To do that we use Procedure 10 and Procedure 11.

Procedure 10: ���������������������^(!")

1. ∀��|�� ∈ 	
�
a. ���������������������(�� , ��)

Lemma 10: removal of all edges going to a non remaining candidate

After the application of Procedure 10, the candidate ��, is not in the neighbor set of any

other candidate and the use of the modified structure does not affect the result of

Procedure 8 when 9~�}�g�} tends to infinite.

Proof:

Procedure 9 was called to eliminate �� from the neighbor set of each existing

candidate and, by Lemma 9, did that in a way that does not affect the results of

Procedure 8.

It is direct from Procedure 9, that it never creates edges going to �� in this process what

proves the present lemma. ∎

Procedure 11: ���������������������^(!4)

1. ∀��|�� ∈ !4
a. ���������������������^(��)

Lemma 11: removal of all edges going to a subset of non remaining candidates

Using Procedure 11 with any !4 ⊂ (8 ∪ 7) as a parameter we obtain a network structure

where no candidate �� ∈ !4 appears in the neighbor set of any candidate and that never

changes the results of Procedure 8 when 9~�}�g�} tends to infinite.

Proof:

By Lemma 10, Procedure 10 removes a non remaining candidate, ��, received as a

parameter from the neighbor sets of all candidates in a way that does not affect the

result of Procedure 8. If �� wasn’t in any neighbor set, Procedure 10 does nothing.

It is direct from Procedure 11, Procedure 10 and Procedure 9 that it is never created an

edge going to a candidate that wasn’t already the destiny of some edge. Thus, a

candidate that has been removed from the neighbor sets of all candidates is never put

back in any of them.

Since Procedure 11 calls Procedure 10 for every candidate in �4 a sequence, the structure

produced by Procedure 11, cannot contain, any edges to a candidate in �4 what proves

the present lemma. ∎

Lemma 12: removal of all edges going to non remaining candidates in an election process

Using Procedure 11 as p�]Z��`����X���kZX���u��"!�Y��Y��Y�X\(!4) we obtain a

network structure where no non remaining candidate appears in the neighbor set of any

candidate and the result of Procedure 8, when 9~�}�g�} tends to infinite, does not

change.

Proof:

By Lemma 10, Procedure 10 removes a non remaining candidate, ��, received as a

parameter from the neighbor sets of all candidates in a way that does not affect the

result of Procedure 8. If �� wasn’t in any neighbor set, Procedure 10 does nothing.

It is direct from Procedure 11, Procedure 10 and Procedure 9 that it is never created an

edge going to a candidate that wasn’t already the destiny of some edge. Thus, a

candidate that has been removed from the neighbor sets of all candidates is never put

back in any of them.

It is direct from the implementations of Procedure 3, Procedure 4, Procedure 5 and

Procedure 6 that all candidates that have been eliminated or elected must have been

once include in !4 in a call to p�]Z��`����X���kZX���u��"!�Y��Y��Y�X\(!4)

This way, the structure produced by Procedure 11, cannot contain, any edges to a non

remaining candidate what proves the present lemma. ∎

In Lemma 13, we show that a complete execution of Procedure 7 can be done in a finite

number of steps as long as we can, in advance, calculate the total amount of votes that

will be discarded. In Lemma 14 we show how to do that calculation.

Lemma 13: transfer of votes in a finite number of steps

If we implement procedure p�]Z��`����X���kZX���u��"!�Y��Y��Y�X\(!4) as Procedure

11 and implement ������_�Zk"Z��(v) without package splits, Procedure 7 will

always end in a finite number of steps and its results will be the same that we would get

if p�]Z��`����X���kZX���u��"!�Y��Y��Y�X\(!4) was doing nothing with 9~�}�g�}

tending to infinite.

Proof:

By Lemma 12 the structure modified by p�]Z��`����X���kZX���u��"!�Y��Y��Y�X\(!4)

will not contain edges going to non remaining candidates and the results of Procedure 8,

when 9~�}�g�} tends to infinite won’t change because of the modifications.

It is direct from Procedure 8 that in the absence of such edges, no vote package is put in v during its execution.

Before calling Procedure 8, Procedure 7, adds to v a number of packages that is equal

to the number of elected candidates possibly added by 1 if a candidate has just been

eliminated.

So, as long as ������_�Zk"Z��(v) does not do any divisions of packages (what it has

no reason to do) Procedure 8 ends in a number of steps that is proportional to the

number of elected candidates what proves the present lemma. ∎

Lemma 14: number of discarded votes and current quota

Let 01 be the value returned by !ZXk[XZ��`��ZXo�^kZ�]^() and 34 the value calculated in

Procedure 6 for the quota in the end of Procedure 7. The values of 34 and 01 must be

given by

34 = 0
 − ∑ 0
�∀56∈7∪8 ∙ ���<9 − ∑ ���∀56∈7 =

and

01 = 2 (0
� − 34)∀56∈7 ∙ ��� + 2 0
� ∙ ���∀56∈8

where 9 is the number of available seats, 7 is the set of already elected candidates, 8 is

the set of already eliminated candidates, 0
 is the current number of valid votes in the

beginning of Procedure 6 and 0
� is the current number of votes of candidate �� in the

beginning of Procedure 6.

Proof:

In the end of Procedure 7, we must have that 3
 = 34 , where 3
 is the current quota, that

is, we should have 34 = (0» − 0¼)/9

where 01 it the total number of votes discarded by Procedure 7 and 0
 in the current

number of valid votes in the beginning of Procedure 6.

It is direct from Procedure 6, Procedure 7 and Procedure 8 that if 34 is smaller than that

value, non transferrable votes will be transferred from elected candidates. If it is larger,

some transferrable votes will fail to be transferred.

In the end of Procedure 7, each elected candidate will have exactly q4 votes. Thus, 0
� − 34 is the number of votes in the vote package that is put in v by Procedure 7 for

any candidate �� ∈ 7.

In the case of eliminated candidates, Procedure 7 creates packages with all their votes

(in practice there can be at most one candidate with more than zero votes at this point,

but that is not relevant).

By Lemma 13, without changing the results of Procedure 7, we can replace the original

political network by a network where no edge goes to a non remaining candidate, except

for the virtual discard candidate. In the modified network, the percentage of transfer

from any candidate �� to the discard virtual candidate is ��� and, since remaining

candidates keep all their votes, there are no indirect vote discards.

This way, the total number of votes discarded by Procedure 7 is given by

01 = 2 (0
� − 34)∀56∈7 ∙ ��� + 2 0
� ∙ ���∀56∈8

Solving the equation

9 ∙ 34 = 0
 − 2 (0
� − 34)∀56∈7 ∙ ��� − 2 0
� ∙ ���∀56∈8

we get a single solution

9 ∙ 34 = 0
 − 2 0
�∀56∈7 ∙ ��� + 34 2 ���∀56∈7 − 2 0
� ∙ ���∀56∈8

34 ¨9 − 2 ���∀56∈7 ® = 0
 − 2 0
�∀56∈7 ∙ ��� − 2 0
� ∙ ���∀56∈8

34 = 0
 − ∑ 0
�∀56∈7∪8 ∙ ���<9 − ∑ ���∀56∈7 =

what proves the present lemma. ∎

In Theorem 1, we show that the final number of elected candidates matches the number

of available seats. To prepare for that, in Corollary 5, we state some restrictions related

the value of the current quota.

Corollary 5: some restrictions to the value of the current quota

The current quota, 3
 :

• is zero from the beginning of the election, if there are no valid votes at all;

• becomes zero if no remaining candidates have any votes at all, no remaining

candidates can be reached by vote transfers originated from elected candidates

and there are less than 9 elected candidates,

• stays positive if any remaining candidate have any votes at all or can be reached

by vote transfers originated from elected candidates and there are less than 9

elected candidates.

Proof:

From Lemma 14, the formula to calculate 3
 is

34 = 0
 − ∑ 0
�∀56∈7∪8 ∙ ���<9 − ∑ ���∀56∈7 =

The initial quota is calculated before there are any elected or eliminated candidates. It is

given by 3 = 0/9 and is only zero if the total amount of valid votes is zero.

If there are less than 9 elected candidates, since each ��� is at most 1 and 0
 =∑ 0
�∀56∈7∪8∪� , 34 can only become zero if, ∀�� ∈ 7, ��� = 1 ∨ 0
� = 0, ∑ 0
�∀56∈� = 0 and

∑ 0
�∀56∈¾ = 0. We can ignore the last equality because, if remaining candidates have no

votes, eliminated candidates, even before vote transfers, must have no votes too.

While there are less than 9 candidates elected, the denominator of the formula, stays

positive.

This proves the present corollary. ∎

Theorem 1: total number of elected candidates

If there are at least 9 candidates and at least one candidate receives a vote, at the end of

the execution of Procedure 2, exactly 9 candidates are elected.

Proof:

Candidates are declared elected in a loop, the elections loop, that alternates between

detecting those that have reached the current quota and operations of vote transfer, that

cause the current quota to be updated. To declare that a candidate is elected, the current

quota calculated in the prior step is used.

While this loop is running the number of eliminated candidates, |8|, is fixed so is |7| + |�|, the sum of the number of elected and remaining candidates.

Let’s call the total number of votes in remaining candidates 0¿.

Let’s consider an iteration of the elections loop such that before it starts |7| < 9 and |7| + |�| > 9 and 0¿ ≠ 0. Let’s call this conditions typical conditions.

Since 0¿ ≠ 0, by Corollary 5, 3
 ≠ 0.

As it can be directly verified, before the loop begins, a votes transfer, must have just

occurred. Thus, by Lemma 2, each already elected candidate has exactly 3
 votes. If the

set of remaining candidates with at least 3
 votes, �q, were such that |7| + I�qI > 9,

the number of votes in 7 ∪ �q would be at least (9 + 1)3
 votes. Since 93
 = 0
 , that

would be more votes than the current number of valid votes, what is impossible.

If the set of remaining candidates with at least 3
 votes, �q, is such that |7| + I�qI =
9, the number of votes in 7 ∪ �q would be at least 93
 votes. Since 93
 = 0
 , that

would be at least as many votes as the current number of valid votes, that means that all

candidates in I�qI have exactly 3
 votes and no other remaining candidates have any

votes at all. After the candidates in �q are declared elected, we have that |7| = 9, |7| + |�| > 9 and 0¿ = 0. This causes the end of the election with exactly 9 elected

candidates and without further vote transfers. Actually there are no votes to be

transferred, but there are candidates to be eliminated, what is promptly done . The

current quota can become undefined, but it is never used again.

If the set of remaining candidates with at least 3
 votes, �q, is such that |7| + I�qI <
9, after the candidates in �q are declared elected we have to consider two possibilities:

there are other remaining candidates with more than zero votes or that can receive

transfers from elected candidates or there are not.

If there are no other remaining candidates with more than zero votes or that can receive

transfers from elected candidates, the remaining seats are filled promptly, using an

arbitrary criterion, and the election is terminated with exactly 9 candidates elected .

If there are other remaining candidates with more than zero votes or that can receive

transfers from elected candidates, by Corollary 5, the vote transfers will end with 3
 ≠0. Thus, the elected candidates will have at most (9 − 1)3
 votes. Since 93
 = 0
 , that

would be less votes than the current number of valid votes, what means that 0¿ ≠ 0.

So we have that |7| < 9 and |7| + |�| > 9 and 0¿ ≠ 0, which are exactly the

conditions of the beginning o the iteration. All the analysis presented is valid for the

next iteration of the loop.

The loop will end in one of the special conditions that terminate the election or when

there no more remaining candidates with at least as many votes as the current quota. So,

if the election continues, in the end of the loop, it will still be valid that |7| < 9 and |7| + |�| > 9 and 0¿ ≠ 0. This implies that |�| ≥ 2.

After that, one elimination take place and the loop is run again.

An elimination can never reduce 0¿ to zero, because, if there are any candidates with

zero votes, one of them must be the eliminated. If no remaining candidates has zero

votes,0¿could only become zero if � became empty, but in the end of the elections loop |�| ≥ 2, so a single elimination cannot do that.

So, if after the elimination, |7| + |�| > 9, the loop will run again under the same

conditions and by the prior analysis will either terminate the election correctly or end

again with the same conditions.

So, eliminations will go on one by one and eventually we will have that |7| + |�| = 9.

The loop will start with |7| < 9 and |7| + |�| = 9, 0¿ ≠ 0. Let’s call this conditions,

ending conditions.

Under this conditions, by Corollary 5, 3
 ≠ 0.

We needed the condition that 0¿ ≠ 0 to deduce that 3
 ≠ 0. After that we can ignore

that condition and assume that the loop started simply with |7| < 9 and |7| + |�| = 9

and 3
 ≠ 0.

The average number of votes in 7 ∪ � is
�
À = 3
. Thus there must be at least one

remaining candidate with at least 3
 votes and that candidate will be declared elected.

Since |7| + |�| = 9, there is no possibility that more than 9 candidates are elected.

After that, if there are no other remaining candidates with more than zero votes or that

can receive transfers from elected candidates, the remaining seats are filled promptly

and the election is terminated with exactly 9 candidates elected. Otherwise, the we

have that |7| < 9 and |7| + |�| = 9 and 3
 ≠ 0. This are

conditions of the beginning that were used in the prior analysis. So the loop goes on,

always electing at least one candidate, till the termination condition is met and the

election is ended with 9 candidates elected.

When the election loop is run for the first time, since 8 = 7 = ∅, |�| ≥ 9 and there is

at least one candidate the received more than zero votes we must have that either the

typical conditions, |7| < 9 and |7| + |�| = 9, 0¿ ≠ 0 or

or the ending conditions, |7| < 9 and |7| + |�| = 9, 0¿ ≠ 0, must be met. Both lead

the election to an end where there are exactly 9 elected candidates.

This proves the present theorem. ∎

Corollary 6, is useful to implement the electoral system in a computer that is performing

finite precision calculations. Typically, the last candidate, may have a number of votes

that is extremely close to the quota, but, because of rounding errors not exactly the

quota. With Corollary 6, such candidate may be claimed to be elected without worrying

about that.

Corollary 6: election of the last remaining candidates

If the number of remaining candidates is equal to 9 − |�| then all remaining candidates

will eventually be elected.

Proof:

This corollary is immediate from Theorem 1. ∎

We will show in Theorem 2, that the result of an election using the political network

system is unique.

Theorem 2: uniqueness of the result of a political network election

The result of an election that follows the definition of the political network electoral

system is unique.

Proof:

The definition of the political network electoral system leads directly to Procedure 2,

Procedure 3, Procedure 4 and Procedure 5, which are completely deterministic except

for the use of `�ZY^P������^_Y]p�]Z��q[��Z(!4), which has some freedom. However,

Lemma 3 guarantees that any implementation of

`�ZY^P������^_Y]p�]Z��q[��Z(!4) must be equivalent to a variation of Procedure 6.

Procedure 6, has some freedom through the functions !ZXk[XZ��`��ZXo�^kZ�]^() and

������_�Zk"Z��(v) and through the procedure

p�]Z��`����X���kZX���u��"!�Y��Y��Y�X\(!4). The latest, by Definition 12, cannot

affect the result of the election. The function ������_�Zk"Z��(v), by Lemma 8 and

Corollary 4, cannot change the result of Procedure 7, that is used to perform vote

transfers assuming that a pre-calculated value for the current quota will be correct at the

end of the transferring process. Such value is defined by the return of

!ZXk[XZ��`��ZXo�^kZ�]^(), which by Lemma 14 is unique.

Therefore, regardless of implementation variations, the value of Procedure 6 cannot

change, what proves the present theorem. ∎

Theorem 3: election in a finite number of steps

The result of an election that uses the political network electoral system can be found in

a finite number of steps.

Proof:

The definition of the political network electoral system leads directly to Procedure 2,

Procedure 4 and Procedure 5, which clearly involve finite numbers of steps, except for

their use of the procedure `�ZY^P������^_Y]p�]Z��q[��Z(!4).
By Lemma 3 this procedure can be implemented as variation of Procedure 6, which

clearly involve only finite steps directly, but uses Procedure 7. Procedure 7, in turn, by

Lemma 13, can be implemented in a way that ends in a finite number of steps.

Procedure 3, uses the function o���k�8l��!�Y]����Y(), whose implementation we

didn’t show. It needs to check if any remaining candidates have any votes and if all

percentages of transfer from elected candidates to the virtual discard candidate are equal

to 1. This can clearly be done in finite steps.

This proves the present theorem. ∎

Lemma 15 is also useful to implement the electoral system with finite precision

calculations. It shows that eliminated candidates can never be too close to the current

quota.

Lemma 15: minimum vote gap

If the number of non eliminated candidates is at least 9 + 1, then, in Procedure 2,

immediately after the execution of Procedure 3, there is at least one candidate with at

most
ÀÀ·L ∙ 3
 votes, where 3
 is the current quota and 9 is the number of seats available.

Proof:

Since, by Lemma 2, eliminated candidates have zero votes, the average number of votes

in non eliminated candidates is 0
? − |8| ≤ 0
9 + 1 = 99 + 1 ∙ 3
.
Since some candidate must have a number of votes that is at most equal to the average,

the present theorem is proved. ∎

Relation to most open party-list systems

In this section, we will establish a floor to the number of elected candidates of a

network solid coalition (Theorem 4) that is immediately applicable to party party-list

coalitions (Corollary 10).

We will also show that the elected members of a the party-list coalition are always those

who received more individual votes (Theorem 5).

Definition 22: party-list coalition

We say that a set of candidates �Á form a party-list coalition if and only if ∀F|�� ∈
�Á, 	� = �Á − {��} and ∀F, ,|�� ∈ �Á, �� ∈ �Á, ��� = 1/|�Á − 1|.

Definition 23: network solid coalition

We say that a set of candidates �Á form a network solid coalition if and only if there is

a path from any candidate in the coalition to any other candidate in the coalition that

only passes through candidates within the coalition and ∀�� ∈ �Á, 	� ⊂ �Á .
The definition above is equivalent to saying that the induced subgraph (Diestel 2000) on

the political network by �Á is strongly connected (Tarjan 1972) and that the coalition

has no outgoing edges.

Corollary 7: solidity of party-list coalitions

Party-list coalitions are network solid coalitions

Proof:

In a party-list coalition there is a direct path from any candidate to any other and there

are no edges going to a candidate outside the coalition.

This proves the present corollary. ∎

Lemma 16: resilience of network solid coalitions

If a set of candidates �Á form a network solid coalition in the original political network

then, in any network structure modified by Procedure 11 where �Á ∩ � ≠ ∅, there is a

path from any candidate in �Á to any candidate in �Á ∩ � that only passes through

candidates within �Á and there are no edges going from any candidate inside the

original coalition to any candidate outside it, except for one edge going from the last

remaining candidate in the coalition to the virtual discard candidate, ��.

Proof:

Since the candidates in �Á form a network solid coalition then there is a path from any

candidate in �Á to any other candidate in �Á that only passes through candidates within

�Á.

We are interested in the fact that there is a path from any candidate in �Á to any

candidate in �Á ∩ � that only passes through candidates within �Á, what is a particular

case of the assertion above. Thus, initially, it is true.

It is also initially true that

When a candidate �� stops being a remaining candidate, Procedure 10 is called by

Procedure 11 and modifies the structure of the network usually removing all incoming

edges of �� and adding edges going from �� to ��, ∀��, ��|� ≠ e, �� ∈ 	� ∧ �� ∈ 	�,

what clearly adds no edges going away from the coalition, if there were no edges going

away from the coalition already.

In the only special case in which ∃��|	� = {��} ∧ 	� = {��} Procedure 10 adds an

edge from �� to �� , where �� is the virtual discard candidate. However, since there is

a path from �� to any candidate in �Á ∩ � and since there can only be an edge going

from �� to �� if �� is, itself, a remaining candidate, the special case can only happen if

�Á ∩ � = {�� , ��}. In this case �Á ∩ � would become equal to �� and the present

lemma’s statement admits an edge going from the last remaining candidate in �Á to �� .
Latter, when �� ceases to be a remaining candidate, Procedure 11 will add edges from

other candidates in �Á to �� , but that is also admitted.

We still have to prove that, after the execution of Procedure 10, there is still a path from

any candidate in �Á to any candidate in �Á ∩ � that only passes through candidates

within �Á.

We can see that that is true noting that if the old path from a candidate � to a candidate �� with � ∈ �Á ∧ �� ∈ �Á ∩ � did not pass through �� it remains unaffected by

Procedure 10. If it passed through �� then there was a path from � till some ��| �� ∈ 	�

only passing through candidates in �Áand there was a path from some ��|�� ∈ 	� to ��

only passing through candidates in �Á. Procedure 10 adds an edge from �� to ��, ∀��, ��|� ≠ e guaranteeing that a path from � to �� still exists.

A path from � to �� itself ceases to exist, but that does not matter since �� stops

belonging to �.
This proves the present lemma. ∎

Corollary 8: resilience of votes in network solid coalitions

If a set of candidates �Á form a network solid coalition, then all votes received by any

candidates belonging to �Á remain in candidates belonging to �Á while there is still

��|�� ∈ �Á ∩ � (there is still a remaining candidate in the coalition).

Proof:

By Lemma 16, while �Á ∩ � ≠ ∅, �Á has no outgoing edges except for one edge going

from the last remaining candidate in the coalition to the virtual discard candidate, ��.

Since remaining candidates never transfer any votes, no votes originally received by

candidates belonging to �Á can be transferred to candidates outside �Á (including ��).

So, these votes can only be transferred to other candidates within �Á.

This proves the present corollary. ∎

Lemma 17: minimum number of votes in network solid coalition candidates

If the number of non eliminated candidates in a network solid coalition is ÃÄ�Å∙À� ÆÄ, then,

in Procedure 2, immediately after the execution of Procedure 3, where candidates are

claimed to be elected, each candidate in this coalition have exactly 3
 votes, where 3
 is

the current quota, 9 is the number of seats available, 0Á is the total number of votes of

the party and 0 is the total number of valid votes.

Proof:

By Corollary 8, all votes originally received by candidates in �Á are always in

candidates in �Á. So the average number of votes of the candidates in �Á is

0Á
ÇÄ0Á ∙ 90 ÈÄ ≥ 0Á0Á ∙ 90 = 09 ≥ 0
9 = 3
.

All candidates with 3
 or more votes are elected in the loop that precedes the call to

Procedure 4 in Procedure 2. By Lemma 2, all elected candidates have exactly 3
 votes

after the vote transfer that happens within that loop. Thus, no candidate in can �Á can

have more them 3
 . To achieve the calculated average, they all must have exactly 3
 . ∎

Theorem 4: minimum number of elected candidates in a network solid coalition

If a set of candidates �Á, |�Á| ≥ ÃÄ�Å∙À� ÆÄ, form a network solid coalition, a number

9Á ≥ ÃÄ�Å∙À� ÆÄ of its members are elected, where 9 is the number of seats available, 0Á is

the total number of votes of the party and 0 is the total number of valid votes.

Proof:

By Lemma 17, immediately after the call to Procedure 3, if the number of non

eliminated candidates in a network solid coalition is ÃÄ�Å∙À� ÆÄ, all candidates in �Á have

exactly 3
 , what implies directly that they all must have been elected. Since eliminations

happen one by one and |�Á| ≥ ÃÄ�Å∙À� ÆÄ, at some point, before the number of non

eliminated candidates of �Á becomes smaller them ÃÄ�Å∙À� ÆÄ, it must become equal,

causing the elections of them all. This proves the present theorem. ∎

In Corollary 9, we show that there is a relatively big gap between the number of votes in

any candidate in a network solid coalition whose number of non eliminated candidates

has reached the theoretical minimum and the remaining candidate with the least number

of votes. This means that rounding errors cannot break the guarantee of the minimum

number of elected candidates for network solid coalitions. If the candidates that should

be elected immediately for reaching the current quota happen not to be so because of

rounding errors, they cannot be eliminated either. They stay as remaining candidates till

they receive more votes, the current quota is reduced, or Corollary 6 is applied. In any

case they are eventually elected.

Corollary 9: vote gap for network solid coalitions

If the number of non eliminated candidates in a network solid coalition is ÃÄ�Å∙À� ÆÄ, then,

in Procedure 2, immediately after the execution of Procedure 3, where candidates are

claimed to be elected, each candidate in this coalition have at least (1 − ÀÀ·L)3
 votes

beyond the number of votes of the remaining candidate with the least number of votes ,

where 3
 is the current quota, 9 is the number of seats available.

Proof:

By Lemma 15,, there is at least one remaining candidate with at most
ÀÀ·L ∙ 3
. By

Lemma 17, the number of votes of any candidate in the network solid coalition is 3
 . ∎

Corollary 10: minimum number of elected candidates in a party-list coalition

If a set of candidates, �Á, form a most open party-list coalition, a number 9Á ≥ ÃÄ�Å∙À� ÆÄ
of its members are elected, where 9 is the number of seats available, 0Á is the total

number of votes of the party and 0 is the total number of valid votes.

Proof:

By Corollary 7, a party-list coalition is a network solid coalition. From Theorem 4, the

present corollary is immediate. ∎

Theorem 5: set of elected candidates in a party-list coalition without incoming edges

If a set of candidates, �Á, form a party-list coalition, and none of its members receive

votes transfers from candidates that are not in �Á (�Á has no incoming edges), the

subset �Á of size 9Á containing all elected candidates of �Á, contains exactly the 9Á

candidates that received more individual votes in �Á.

Proof:

All candidates that are not elected in the political network system are eliminated when

they become the candidate with least votes of all remaining candidates.

When any transfer of votes with origin in a candidate of �Á takes place, the number of

votes transferred to each remaining candidate of �Á is the same, since in a party-list

coalition, all percentages of transfer are equal.

Since no candidates in �Á receives transfers from outside �Á, at any moment in the

election, the number of votes transferred to any candidate in �Á is equal to a constant,

C.

Thus, if �L and �A, are two candidates belonging to �Á, that received respectively 0L

and 0A individual votes such that 0L > 0A, the values 0
L and 0
A representing their

current number of votes are such that 0
L = 0L + C > 0A + C = 0
A.

So �L always has more votes then �A and �L can never be eliminated before �A.

This proves the present theorem. ∎

Definition 24: most open party-list network structure

We say that a political network has a most open party-list structure if and only of all

candidates are in party-list coalitions.

Corollary 11: elected candidates of a party-list coalition in a most open party-list network structure

If the political network has a most open party-list structure the elected candidates of

any party-list coalition are exactly those who received more individual votes in the

coalition.

Proof:

Every candidate is in a party-list coalition and party-list coalitions have no outgoing

edges. This implies that no coalitions can have incoming edges either. The application

of Theorem 5 to each coalition proves the present corollary. ∎

Computational complexity of a political network election and speed

test

In Theorem 6, we show that the computational time complexity (Papadimitriou 2003)

of a political network election is @(9 ∙ ?A + ?B/C), where ? is the number of

candidates, 9 is the number of seats available and C is the number of processors. In

Theorem 7, we show that its computational space complexity is @(?A). Such

complexities are not low, but not prohibitive for a modern computer, what proves that

the proposed systems is feasible in practice.

Theorem 6: computational time complexity

The computational complexity of the a political network election is @(9 ∙ ?A + ?B/C),

where ? is the number of candidates and C is the number of processors.

Proof:

Let’s consider an implementation of Procedure 8 where ������_�Zk"Z��(v) does no

splits and where p�]Z��`����X���kZX���u��"!�Y��Y��Y�X\(!4) is implemented as

Procedure 11.

Procedure 8 contains a main loop that removes one element of the structure v in each

step and since, by Lemma 12, the structure modified by

p�]Z��`����X���kZX���u��"!�Y��Y��Y�X\(!4) does not contain any edges going to non

remaining candidates, puts no packages back into v.

Since, Procedure 7, put in v, at most one element for every elected candidate and one

element for the most recently eliminated candidate, this loop is executed at most 9

times, where 9 is the number of available seats (the elected candidates are at most 9 − 1, or the election would be already over).

Inside the main loop there is a sub loop that is executed once for every neighbor of the

node removed from v. Every node may have at most ? neighbors.

So the computational time complexity of Procedure 7 is @(9 ∙ ?), where ? is the

number of candidates and 9 is the number of available seats.

Other than calling Procedure 7 once, Procedure 6 only executes constant time

commands, calls to p�]Z��`����X���kZX���u��"!�Y��Y��Y�X\(!4) and calls

!ZXk[XZ��`��ZXo�^kZ�]^(). The latest, by Lemma 14,

only needs to apply a linear time formula. Thus, except for

p�]Z��`����X���kZX���u��"!�Y��Y��Y�X\(!4), whose analysis we will do separately ,

Procedure 6 is also @(9 ∙ ?).

At the same time, Procedure 6, is only called when a candidate is eliminated or when at

least one candidate is elected. In both cases, at least one candidate is removed from the

set of remaining candidates. Since there is no return to this set, Procedure 6 can be

called at most ? times in the whole election process.

Thus, the computational time complexity of all vote transfers in the full election

process, is @(9 ∙ ?A).

Procedure p�]Z��`����X���kZX���u��"!�Y��Y��Y�X\(!4), which is implemented as

Procedure 11, is called once for every call to Procedure 6 and thus, at most, ? times.

Procedure 11 calls Procedure 10 for every candidate, ��, in the set !4 . Candidates in this

set are those who have just been elected or eliminated, thus, each candidate, must be is

this set once and only once in the whole election. This way, Procedure 10 is called ?

times in the election.

Every time Procedure 10 is called, it calls Procedure 9 for every node that has �� as a

neighbor. They are at most ?, thus Procedure 9 is called at most ?A times. Procedure 9

includes loops where neighbor sets are scanned and each of them can be of length at

most ?.

During the execution of Procedure 9, the neighbor sets of the candidates that had �� as a

neighbor are updated based on their prior values and on the neighbor set of ��, which is

fixed. This means that these updates can be run in parallel, without any synchronization

delays.

Thus, the time complexity of the p�]Z��`����X���kZX���u��"!�Y��Y��Y�X\(!4) for the

full election process is @(?B/C).

It can be checked directly that other than vote transfers and updates in the network the

election involves only less complex operations. The only point that may be unclear is

the use of the function o���k�8l��!�Y]����Y(), whose implementation we didn’t

show, by Procedure 3. It needs to check if any remaining candidates have any votes and

if all percentages of transfer from elected candidates to the virtual discard candidate are

all equal to 1. This can clearly be done, at worst, in linear time. The calls to

o���k�8l��!�Y]����Y() happen only when at least one candidate is elected. So its full

complexity is @(9 ∙ ?).

Therefore, the time complexity of the full election algorithm is @(9 ∙ ?A + ?B/C). ∎

Theorem 7: computational space complexity

The computational space complexity of the a political network election is @(?A).

Proof:

It is easy to see that the political network election requires the storage of some data

whose amount is fixed, like the current quota, some data whose amount is proportional

to the number of candidates, like the set of remaining candidates, the set of eliminated

candidates and the number of current votes for every candidate and some data whose

amount is proportional to the number of relations among candidates like the sets of

neighbors and the percentages of transfer for each neighbor.

Thus, the space complexity of the election is @(�) + @(?) + @(?A) = @(?A). ∎

Analysis of the network structure

To investigate the political network it is convenient to be able to remove all edges going

to arbitrary sets candidates as if they had been eliminated or elected and observe the

relations among the candidates that remain. Procedure 11 removes all edges going to

eliminated or elected candidates from the network without changing the result of the

election. We can apply this procedure to a set of arbitrary candidates, !� and just

observe the results. This makes sense because in the modified structure no votes could

go from a candidate �� to a candidate �� passing through any candidate in !�. This way,

relations among candidates that may be disguised by the interposition of elements of !�

will have to show up.

We will show in Theorem 8, that the resulting network is always the same regardless of

whether any candidate ��|�� ∈ !� is treated as eliminated or elected.

Theorem 8: removal of all incoming edges of arbitrary candidates

If Procedure 11 is called with any set of candidates, !�, arbitrarily chosen as a

parameter, the result will be a network structure that is exactly the one we would get if

the candidates in !� had been elected or eliminated during the execution of Procedure 2,

regardless of the order of the eliminations and elections and regardless of which

candidates were elected and which were eliminated.

Proof:

It is easy to see that Procedure 11 is not even aware of which candidates were

eliminated and which were elected, so its behavior cannot be affected by that.

By Lemma 11, the use of Procedure 11 when any subset of 8 ∪ 7 is passed as a

parameter never changes the results of Procedure 8.

Let suppose that Procedure 11 could result in two different structures, �É and �Ê . In

this case, the use of both structures would have to always lead Procedure 8 to the same

results. Procedure 11 applies several modifications the network without ever changing

the results of Procedure 8, so, indeed, there can be many different structures that can

lead Procedure 8 always to the same results. We will prove that two different structures

that could be the final result of Procedure 11 cannot.

If �É ≠ �Ê There would be two candidates �� and �� such that ���É ≠ ���Ê, where ���É is

the percentage of transfer from �� to �� in �É and ���Ê is the percentage of transfer from

�� to �� in �Ê.

Since in the end of the execution of Procedure 11 there are only edges going to

remaining candidates, then �� would have to be a remaining candidate.

Suppose that latter, a transfer of votes with !� as the origin takes place and that no other

transfers take place in the same round, what can happen, for example when !� is

eliminated. The amount of votes transferred to !Q in the end of Procedure 8 would be

different in �_ and �Ë, contradicting Lemma 12.

There is still the possibility that the structures �É and �Ê differ only in respect to

outgoing edges of candidates that have already been eliminated, since that would not

affect the results of Procedure 8. However, it is direct from the implementations of

Procedure 9, Procedure 10 and Procedure 11 that they treat outgoing edges of any

candidates in the same way. So, if �É and �Ê cannot differ in respect to the outgoing

edges of remaining candidates, they cannot differ in respect to outgoing edges of any

candidates.

This proves the present theorem. ∎

Insensitivity to the order of eliminations and elections

In Theorem 9 we show that the number of votes in any remaining candidate and the

number of discarded votes do not depend on the order of elections and eliminations that

have already taken place in an election process. Before that, we need some lemmas and

a corollary.

Lema 18: insensitivity to the postponing of the elimination of a single candidate

If we sequentially execute an operation of vote transferring through the network, claim

one arbitrary candidate �� to be eliminated and execute another operation of vote

transferring, than ∀�� ∈ � ∪ {��} the final number of votes in candidate ��, 04�, is

identical to 0��, where 0�� is the final number of votes in candidate �� when first claim ��

to be eliminated and them execute a single operation of vote transferring.

Proof:

By Lemma 13, we can replace the original political network by a network where no

edges go to a non remaining candidate, except for the virtual discard candidate. We

assume that throughout the present proof.

The first proposed sequence of operations involve transferring votes, eliminating a

candidate and transferring votes again. We will need to calculate some values

immediately after the first vote transferring, so that we can use them latter to calculate

the final quota, 34 and 04�, ∀�� ∈ � ∪ {��}. We will refer to such values by 3� , 0� , 0��

with meanings that can easily be deduced by the contexts.

Using Lemma 14 after the first vote transferring operation we have

3� = 0
 − ∑ 0
�∀56∈7∪8 ∙ ���<9 − ∑ ���∀56∈7 =

Also by Lemma 14, the current number of valid votes at this point is given by

0� = 0
 − 2 (0
� − 3�)∀56∈7 ∙ ��� − 2 0
� ∙ ���∀56∈8

At the same time, by Lemma 2, after the first vote transfer process, all elected

candidates have exactly q� votes and all eliminated candidates have exactly 0 votes.

Thus, 0
� − 3� is the number of votes in the vote package put in v by Procedure 7 for any

candidate �� ∈ 7. In the case of eliminated candidates Procedure 7 creates a package

with all their votes. Thus, the number of votes in �� after the first vote transferring is

given by

0Ì� = 0
� + 2 (0
� − 3�)∀56∈7 ∙ ��� + 2 0
� ∙ ���∀56∈8

Since no edges go to elected or eliminate candidates, for any candidate ��|�� ∈ 7 ∪ 8, ��� = 0.

After we eliminate ��, the network is adjusted by Procedure 11. For any candidate ��

we have that

���� = ��� + ��� ∙ ���1 − ��� ∙ ���

For the candidates �� that are in 7 ∪ 8, since ��� = 0,

���� = ��� + ��� ∙ ���

Lets now calculate 34 .
To obtain the current quota after the second transfer, we apply the formula for the

current quota again but start from the amounts of votes in each candidate after the first

transfers and remember that �� has been eliminated. We obtain

34 = 0� − 0�� ∙ ��� − ∑ 3�∀56∈7 ∙ ����<9 − ∑ ���∀56∈7 =

34 = <0
 − ∑ (0
� − 3�)∀56∈7 ∙ ��� − ∑ 0
� ∙ ���∀56∈8 = − 0�� ∙ ��� − ∑ 3�∀56∈7 ∙ ����<9 − ∑ ���∀56∈7 =

34 ∙ ¨9 − 2 ���∀56∈7 ® =

¨0
 − 2 (0
� − 3�)∀56∈7 ∙ ��� − 2 0
� ∙ ���∀56∈8 ®

− ¨0
� + 2 (0
� − 3�)∀56∈7 ∙ ��� + 2 0
� ∙ ���∀56∈8 ® ∙ ���

− 2 3�
∀56∈7 ∙ (��� + ��� ∙ ���)

34 = 0
 − 0
� ∙ ��� − ∑ 0
� ∙ (��� + ��� ∙ ���)∀56∈7∪8<9 − ∑ ���∀56∈7 =

We have calculated the current quota after the second vote transfer for the case where

we transfer votes, eliminate a candidate and transfer votes again.

Now, let’s calculate 3� the current quota after the vote transfer for the case where we

first eliminated the candidate and them perform a single vote transfer.

We start by adjusting the network to reflect the elimination of !Q, what, as we have

seen, for candidates !" that are in 7 ∪ 8, gives us �� "¶ = �"¶ + �"Q ∙ �Q¶. Then we

apply the formula of what yields to

3� = 0
 − ∑ 0
�∀56∈7∪8∪G!QÍ ∙ <��� + ��� ∙ ���=<9 − ∑ ���∀56∈7 =

Since ��� = 0,

3� = 0
 − 0
� ∙ ��� − ∑ 0
�∀56∈7∪8 ∙ (��� + ��� ∙ ���)<9 − ∑ ���∀56∈7 =

Thus 3� = 34 .
We are ready to calculate 04� and 0��, ∀�� ∈ � ∪ {��}. Let’s start by 04�.

After the first transferring of votes we have that

0�� = 0
� + 2 (0
� − 3�)∀56∈7 ∙ ��� + 2 0
� ∙ ���∀56∈8

After the elimination of ��, we have that

04� = 0�� + 0�� ∙ ��� + 2 (3� − 34)∀56∈7 ∙ ����

04� = 0
� + 2 (0
� − 3�)∀56∈7 ∙ ��� + 2 0
� ∙ ���∀56∈8 +

¨0
� + 2 (0
� − 3�)∀56∈7 ∙ ��� + 2 0
� ∙ ���∀56∈8 ® ∙ ��� +

2 (3� − 34)∀56∈7 ∙ (��� + ��� ∙ ���)

04� = 0
�+0
� ∙ ��� + 2 (0
� − 34)∀56∈7 ∙ (��� + ��� ∙ ���) + 2 0
� ∙ (��� + ��� ∙ ���)∀56∈8

Now let’s go to 0��. It is given by

0�� = 0
� + 0
� ∙ ��� + 2 (0
� − 34)∀56∈7 ∙ ���� + 2 0
� ∙ ����∀56∈8

0�� = 0
� + 0
� ∙ ��� + 2 (0
� − 34)∀56∈7 ∙ (��� + ��� ∙ ���) + 2 0
� ∙ (��� + ��� ∙ ���)∀56∈8

Thus 04� = 0��, what proves the present lemma. ∎

Lema 19: insensitivity to postponing of the election of a single candidate

If we sequentially execute an operation of vote transferring through the network, claim

one arbitrary candidate �� to be elected and execute another operation of vote

transferring, than ∀�� ∈ � ∪ {��} the final number of votes in candidate ��, 04�, is

identical to 0��, where 0�� is the final number of votes in candidate �� when we first claim �� to be elected and them execute a single operation of vote transferring.

Proof:

By Lemma 13, we can replace the original political network by a network where no

edges go to a non remaining candidate, except for the virtual discard candidate. We

assume that throughout the present proof.

The first proposed sequence of operations involve transferring votes, claiming a

candidate to be elected and transferring votes again. We will need to calculate some

values immediately after the first vote transferring, so that we can use them latter to

calculate 34 and 04�, ∀�� ∈ � ∪ {��}. We will refer to such values by 3� , 0� , 0�� with

meanings that can easily be deduced by the contexts.

Using Lemma 14, after the first vote transferring operation we have

3� = 0
 − ∑ 0
�∀56∈7∪8 ∙ ���<9 − ∑ ���∀56∈7 =

Also by Lemma 14, the current number of valid votes at this point is given by

0� = 0
 − 2 (0
� − 3�)∀56∈7 ∙ ��� − 2 0
� ∙ ���∀56∈8

At the same time, by Lemma 2, after the first vote transfer process, all elected

candidates have exactly q� votes and all eliminated candidates have exactly 0 votes.

Thus, 0
� − 3� is the number of votes in the vote package put in v by Procedure 7 for any

candidate �� ∈ 7. In the case of eliminated candidates Procedure 7 creates a package

with all their votes. Thus, the number of votes in �� after the first vote transferring is

given by

0Ì� = 0
� + 2 (0
� − 3�)∀56∈7 ∙ ��� + 2 0
� ∙ ���∀56∈8

Since no edges go to elected or eliminate candidates, for any candidate ��|�� ∈ 7 ∪ 8, ��� = 0.

After we claim that �� has been elected, the network is adjusted by Procedure 11. For

any candidate �� we have that

���� = ��� + ��� ∙ ���1 − ��� ∙ ���

For the candidates �� that are in 7 ∪ 8, since ��� = 0,

���� = ��� + ��� ∙ ���

Lets now calculate 34 .
To obtain the current quota after the second transfer, we apply the formula for the

current quota again but start from the amounts of votes in each candidate after the first

transfers and remember that �� has been elected. We obtain

34 = 0� − 0�� ∙ ��� − ∑ 3�∀56∈7 ∙ ����<9 − ��� − ∑ ���∀56∈7 =

34 = <0
 − ∑ (0
� − 3�)∀56∈7 ∙ ��� − ∑ 0
� ∙ ���∀56∈8 = − 0�� ∙ ��� − ∑ 3�∀56∈7 ∙ ����<9 − ��� − ∑ ���∀56∈7 =

34 ∙ ¨9 − ��� − 2 ���∀56∈7 ® =

¨0
 − 2 (0
� − 3�)∀56∈7 ∙ ��� − 2 0
� ∙ ���∀56∈8 ®

− ¨0
� + 2 (0
� − 3�)∀56∈7 ∙ ��� + 2 0
� ∙ ���∀56∈8 ® ∙ ���

− 2 3�
∀56∈7 ∙ (��� + ��� ∙ ���)

34 = 0
 − 0
� ∙ ��� − ∑ 0
� ∙ (��� + ��� ∙ ���)∀56∈7∪8<9 − ��� − ∑ ���∀56∈7 =

We have calculated the current quota after the second vote transfer for the case where

we transfer votes, claim that a candidate is elected and transfer votes again.

Now, let’s calculate 3� the current quota after the vote transfer for the case where we

first claim the candidate to be elected and them perform a single vote transfer.

We start by adjusting the network to reflect the election of !Q, what, as we have seen,

for candidates !" that are in 7 ∪ 8, gives us �� "¶ = �"¶ + �"Q ∙ �Q¶. Then we apply the

formula of , what yields to

3� = 0
 − ∑ 0
�∀56∈7∪8∪G!QÍ ∙ <��� + ��� ∙ ���=<9 − ��� − ∑ ���∀56∈7 =

Since ��� = 0,

3� = 0
 − 0
� ∙ ��� − ∑ 0
�∀56∈7∪8 ∙ (��� + ��� ∙ ���)<9 − ��� − ∑ ���∀56∈7 =

Thus 3� = 34 .
We are ready to calculate 04� and 0�� ∀�� ∈ � ∪ {��}. Let’s start by 04�.

After the first transferring of votes we have that

0�� = 0
� + 2 (0
� − 3�)∀56∈7 ∙ ��� + 2 0
� ∙ ���∀56∈8

After the election of ��, we have that

04� = 0�� + (0�� − 34) ∙ ��� + 2 (3� − 34)∀56∈7 ∙ ����

04� = 0
� + 2 (0
� − 3�)∀56∈7 ∙ ��� + 2 0
� ∙ ���∀56∈8 +

¨0
� − 34 + 2 (0
� − 3�)∀56∈7 ∙ ��� + 2 0
� ∙ ���∀56∈8 ® ∙ ��� +

2 (3� − 34)∀56∈7 ∙ (��� + ��� ∙ ���)

04� = 0
� + (0
� − 34) ∙ ��� + 2 (0
� − 34)∀56∈7 ∙ (��� + ��� ∙ ���) + 2 0
� ∙ (��� + ��� ∙ ���)∀56∈8

Now let’s go to 0��. It is given by

0�� = 0
� + (0
� − 34) ∙ ��� + 2 (0
� − 34)∀56∈7 ∙ ���� + 2 0
� ∙ ����∀56∈8

0�� = 0
� + (0
� − 34) ∙ ��� + 2 (0
� − 34)∀56∈7 ∙ (��� + ��� ∙ ���) + 2 0
� ∙ (��� + ��� ∙ ���)∀56∈8

Thus 04� = 0��, what proves the present lemma. ∎

Corollary 12: insensitivity to postponing the elimination or the election of an element of a set of

candidates to be elected or eliminated

If we simultaneously claim all candidates in a set 84 to be eliminated and all candidates

in a set 74 to be elected and perform a vote transfer process, ∀�� ∈ � ∪ {��} the final

number of votes in candidate ��, 04�, is identical to 0��, where 0�� is the final number of

votes in candidate �� when we simultaneously claim all candidates in a set 84 −
G��Í, �� ∈ 84 to be eliminated and all candidates in a set 74 to be elected, perform a vote

transfers process and latter we claim �� to be eliminated and perform another vote

transfer and is also identical to 0Î�, where 0Î� is the final number of votes in candidate ��

when we simultaneously claim all candidates in a set 84 to be eliminated and all

candidates in a set 74 − {��}, �� ∈ 74 to be elected and perform a vote transfer process and

latter we claim �� to be elected and perform another vote transfer process .

Proof:

Let’s consider the modified structure specified in Lemma 13.

If we postpone the treatment of ��, the structure of the network will, first, be changed

considering only the other eliminations and elections. If we treat �� together with all

others, we can still let the modifications related to it to be the last, since Procedure 11

does not require any particular order. Thus we can consider the structure that was

modified to reflect the other eliminations and elections as a starting point to apply the

modifications related to �� for both cases.

In one case, we should transfer the votes of the other candidates while !Q is treated as a

remaining candidate, modify the structure to reflect the elimination or election of !Q and

apply another vote transfer process to the network. In the other case, we should modify

the structure to reflect the elimination or election of !Q and apply a single vote transfer

process to the network. By Lema 18 and Lema 18 the two ways of proceeding yield the

same results, proving the present corollary. ∎

Theorem 9: general insensitivity to the order election and elimination of candidates

If (84 , 74) is a pair where 84 is a set of candidates to be eliminated and 74 a set of

candidates to be elected, we can execute the elections and eliminations in any order

including arbitrary simultaneous operations of elimination and election, execute vote

transfers process between any two consecutive operations and ∀�� ∈ � ∪ {��} the final

number of votes in candidate ��, 04�, will always be the same.

Proof:

Let’s start form an arbitrary sequence of pairs of length �,

<(8¶, 7¶), … , (8�, 7�), … , (8"�Ï, 7"�Ï)=, where ∀F, 0 ≤ F < �, (8�, 7�) is such that all

candidates in 8� are to be eliminated, all candidates in 7� are to be elected and all

elections and eliminations in (8�, 7�) are to be performed simultaneously and where the

elections and eliminations specified in (8�, 7�) are to be performed before the elections

and eliminations specified in (8�·Ï, 7�·Ï) and vote transfer process are to be executed

between the handling of any two consecutive pairs. We will show that any other

sequence of pairs would lead to the same results.

First, we can apply Corollary 12, to separate the candidates that were part of a pair (8�, 7�). We can do that choosing any individual candidate, �� , of 8� or 7� and

postponing his or her election or elimination to immediately after (8�, 7�) without

changing any results. This way the sequence would become

x(8¶, 7¶), … , <8� − {��}, 7�=, <{��}, ∅= … , (8"�Ï, 7"�Ï)y
or

x(8¶, 7¶), … , <8�, 7� − {��}=, <∅, {��}= … , (8"�Ï, 7"�Ï)y.

We can keep doing that till we have a sequence of pairs where one set is always empty

and the other unitary. That is equivalent to a sequence of individual elections and

eliminations.

Then, because the second pair in the list contains only one candidate, we can use

Corollary 12 to join it with the first pair, making their operations simultaneous without

changing the results.

Latter we can add the next pair, which still contains only one candidate, to the first pair.

By Corollary 12, that won’t change the results either. We can keep doing this till we

have only one pair, specifying that all eliminations and elections are simultaneous.

This set is identical for any initial sequence, what proves the present theorem. ∎

References

Diestel, Reinhard. Graph theory. Vol. 173. Springer, 2000.

Papadimitriou, Christos H. Computational complexity. John Wiley and Sons Ltd., 2003.

Tarjan, Robert. "Depth-first search and linear graph algorithms." SIAM journal on

computing 1, no. 2 (1972): 146-160.

